Subsonic Motion of a Projectile in a Fluid Complex Plasma under Microgravity Conditions

  • D. I. Zhukhovitskii Joint Institute of High Temperatures, Russian Academy of Sciences
  • V. E. Fortov Joint Institute of High Temperatures, Russian Academy of Sciences
  • V. I. Molotkov Joint Institute of High Temperatures, Russian Academy of Sciences
  • A. M. Lipaev Joint Institute of High Temperatures, Russian Academy of Sciences
  • V. N. Naumkin Joint Institute of High Temperatures, Russian Academy of Sciences
  • H. M. Thomas Max-Planck-Institut f¨ur Extraterrestrische Physik
  • A. V. Ivlev Max-Planck-Institut f¨ur Extraterrestrische Physik
  • G. E. Morfill Max-Planck-Institut f¨ur Extraterrestrische Physik
Keywords: dusty plasma, plasma crystal, nonviscous motion, cavity deformation

Abstract

Subsonic motion of a large particle moving through the bulk of a dust crystal formed by negatively charged small particles is investigated, by using the PK-3 Plus laboratory on the board of the International Space Station. Tracing the particle trajectories shows that the large particle moves almost freely through the bulk of a plasma crystal, while dust particles move along characteristic a-shaped pathways near the large particle. We develop a theory of the nonviscous motion of dust particles near a large particle and calculate particle trajectories. The deformation of a cavity around a large projectile moving with subsonic velocity in the cloud of small dust particles is investigated with a due regard for the friction between dust particles and atoms of a neutral gas. The pressure of a dust cloud at the surface of a cavity around the projectile can become negative, which entails the emergence of a considerable asymmetry of the cavity, i.e., the cavity deformation. The corresponding threshold velocity is calculated, which is found to decrease with increasing the cavity size. A good agreement with experiment validates our approach.

References

Complex and Dusty Plasmas: from Laboratory to Space, edited by V.E. Fortov and G.E. Morfill (CRC Press, Boca Raton, 2009).

https://doi.org/10.1201/9781420083125

J.H. Chu and I. Lin, Phys. Rev. Lett. 72, 4009 (1994).

https://doi.org/10.1103/PhysRevLett.72.4009

H. Thomas, G.E. Morfill, V. Demmel, J.Goree, B. Feuerbacher, and D. M¨ohlmann, Phys. Rev. Lett. 73, 652 (1994).

https://doi.org/10.1103/PhysRevLett.73.652

Y. Hayashi and S. Tashibana, Jpn. J. Appl. Phys. 33, L804 (1994).

https://doi.org/10.1143/JJAP.33.L804

S.V. Vladimirov, K. Ostrikov, and A.A. Samarian, Physics and Applications of Complex Plasmas (Imperial College, London, 2005).

https://doi.org/10.1142/p397

V. Fortov, A. Ivlev, S. Khrapak, A. Khrapak, and G. Morfill, Phys. Rep. 421, 1 (2005).

https://doi.org/10.1016/j.physrep.2005.08.007

G.E. Morfill and A.V. Ivlev, Rev. Mod. Phys. 81, 1353 (2009).

https://doi.org/10.1103/RevModPhys.81.1353

P.K. Shukla and B. Eliasson, Rev. Mod. Phys. 81, 25 (2009).

https://doi.org/10.1103/RevModPhys.81.25

M. Bonitz, C. Henning, and D. Block, Rep. Prog. Phys. 73, 066501 (2010).

https://doi.org/10.1088/0034-4885/73/6/066501

G.E. Morfill, U. Konopka, M. Kretschmer, M. Rubin-Zuzic, H.M. Thomas, S.K. Zhdanov, and V. Tsytovich, New J. Phys. 8, 7 (2006).

https://doi.org/10.1088/1367-2630/8/1/007

D. Caliebe, O. Arp, and A. Piel, Phys. of Plasmas 18, 073702 (2011).

https://doi.org/10.1063/1.3606468

A. Piel, O. Arp, M. Klindworth, and A. Melzer, Phys. Rev. E 77, 026407 (2008).

https://doi.org/10.1103/PhysRevE.77.026407

K.O. Menzel, O. Arp, and A. Piel, Phys. Rev. E 83, 016402 (2011).

https://doi.org/10.1103/PhysRevE.83.016402

O. Arp, D. Caliebe, and A. Piel, Phys. Rev. E 83, 066404 (2011).

https://doi.org/10.1103/PhysRevE.83.066404

M. Schwabe, S.K. Zhdanov, H.M. Thomas, A.V. Ivlev, M. Rubin-Zuzic, G.E.Morfill, V.I. Molotkov, A.M. Lipaev, V.E. Fortov, and T. Reiter, New J. Phys. 10, 033037 (2008).

https://doi.org/10.1088/1367-2630/10/3/033037

G.E. Morfill, H.M. Thomas, U. Konopka, H. Rothermel, M. Zuzic, A. Ivlev, and J. Goree, Phys. Rev. Lett. 83, 1598 (1999).

https://doi.org/10.1103/PhysRevLett.83.1598

S.A. Khrapak, B.A. Klumov, P. Huber, V.I. Molotkov, A.M. Lipaev, V.N. Naumkin, H.M. Thomas, A.V. Ivlev, G.E. Morfill, O.F. Petrov et al., Phys. Rev. Lett. 106, 205001 (2011).

https://doi.org/10.1103/PhysRevLett.106.205001

H.M. Thomas, G.E. Morfill, V.E. Fortov, A.V. Ivlev, V.I. Molotkov, A.M. Lipaev, T. Hagl, H. Rothermel, S.A. Khrapak, R.K. Suetterlin et al., New J. Phys. 10, 033036 (2008).

https://doi.org/10.1088/1367-2630/10/3/033036

M. Schwabe, K. Jiang, S. Zhdanov, T. Hagl, P. Huber, A.V. Ivlev, A.M. Lipaev, V.I. Molotkov, V.N. Naumkin, K.R. S¨uutterlin et al., EPL 96, 55001 (2011).

https://doi.org/10.1209/0295-5075/96/55001

M.-C. Chang, Y.-P. Tseng, and I. Lin, Phys. of Plasmas 18, 033704 (2011).

https://doi.org/10.1063/1.3568839

D. Samsonov, J. Goree, H.M. Thomas, and G.E. Morfill, Phys. Rev. E 61, 5557 (2000).

https://doi.org/10.1103/PhysRevE.61.5557

D.I. Zhukhovitskii, V.E. Fortov, V.I. Molotkov, A.M. Lipaev, V.N. Naumkin, H.M. Thomas, A.V. Ivlev, M. Schwabe, and G.E. Morfill, Phys. Rev. E 86, 016401 (2012).

https://doi.org/10.1103/PhysRevE.86.016401

A.V. Ivlev and D.I. Zhukhovitskii, Phys. Plasmas 19, 093703 (2012).

https://doi.org/10.1063/1.4750070

V.E. Fortov, O.F. Petrov, A.D. Usachev, and A.V. Zobnin, Phys. Rev. E 70, 046415 (2004).

https://doi.org/10.1103/PhysRevE.70.046415

J. Goree, G.E. Morfill, V.N. Tsytovich, and S.V. Vladimirov, Phys. Rev. E 59, 7055 (1999).

https://doi.org/10.1103/PhysRevE.59.7055

V. Nosenko, A.V. Ivlev, and G.E. Morfill, Phys. Plasmas 17, 123705 (2010).

https://doi.org/10.1063/1.3525254

V.A. Schweigert, I.V. Schweigert, V. Nosenko, and J. Goree, Phys. Plasmas 9, 4465 (2002).

https://doi.org/10.1063/1.1512656

B. Liu, J. Goree, V. Nosenko, and L. Boufendi, Phys. Plasmas 10, 9 (2003).

https://doi.org/10.1063/1.1526701

B. Buttensch¨on, M. Himpel, and A. Melzer, New J. Phys. 13, 023042 (2011).

https://doi.org/10.1088/1367-2630/13/2/023042

L.D. Landau and E.M. Lifshitz, Fluid Mechanics (Pergamon Press, New York, 1959).

D.I. Zhukhovitskii, A.V. Ivlev, V.E. Fortov, and G.E. Morfill, Phys. Rev. E 87, 063108 (2013).

https://doi.org/10.1103/PhysRevE.87.063108

K.R. S¨utterlin, A. Wysocki, A.V. Ivlev, C. R¨ath, H.M. Thomas, M. Rubin-Zuzic, W.J. Goedheer, V.E. Fortov, A.M. Lipaev, V.I. Molotkov et al., Phys. Rev. Lett. 102, 085003 (2009).

https://doi.org/10.1103/PhysRevLett.102.085003

Published
2018-10-19
How to Cite
Zhukhovitskii, D., Fortov, V., Molotkov, V., Lipaev, A., Naumkin, V., Thomas, H., Ivlev, A., & Morfill, G. (2018). Subsonic Motion of a Projectile in a Fluid Complex Plasma under Microgravity Conditions. Ukrainian Journal of Physics, 59(4), 385. https://doi.org/10.15407/ujpe59.04.0385
Section
Plasmas and gases