Thermal Conductivity of Molecular Crystals with Self-Organizing Disorder

Authors

  • A. I. Krivchikov B. Verkin Institute for Low Temperature Physics and Engineering, Nat. Acad. of Sci. of Ukraine
  • G. A. Vdovychenko B. Verkin Institute for Low Temperature Physics and Engineering, Nat. Acad. of Sci. of Ukraine
  • O. A. Korolyuk B. Verkin Institute for Low Temperature Physics and Engineering, Nat. Acad. of Sci. of Ukraine
  • O. O. Romantsova B. Verkin Institute for Low Temperature Physics and Engineering, Nat. Acad. of Sci. of Ukraine

DOI:

https://doi.org/10.15407/ujpe59.03.0319

Keywords:

thermal conductivity, orientational glass, phonon scattering, soft potential model

Abstract

The thermal conductivity of some orientational glasses of protonated C2H5OH and deuterated C2H5OH ethanol, cyclic substances (cyclohexanol C6H11OH, cyanocyclohexane C6H11CN, cyclohexene C6H10, and freon 112 (CFCl2)2 have been analyzed in the temperature interval 2–130 K. The investigated substances demonstrate new effects concerned with the physics of disordered systems. Universal temperature dependences of the thermal conductivity of molecular orientational glasses have been revealed. At low temperatures, the thermal conductivity exhibits a universal behavior that can be described by the soft potential model. At relatively high temperatures, the thermal conductivity has a smeared maximum and than decreases with increase in the temperature, which occurs typically in crystalline structures.

References

A.I. Krivchikov, A.N. Yushchenko, V.G. Manzhelii et al., Phys. Rev. B. 74, 060201(R) (2006)

A.I. Krivchikov, F.J. Bermejo, I.V. Sharapova et al., Fiz. Nizk. Temp. 37, 651 (2011).

I.V. Sharapova, A.I. Krivchikov, O.A. Korolyuk et al., Phys. Rev. B. 81, 094205 (2010).

https://doi.org/10.1103/PhysRevB.81.094205

A.I. Krivchikov, O.A. Korolyuk, I.V. Sharapova et al., Phys. Rev. B. 85, 014206 (2012).

https://doi.org/10.1103/PhysRevB.85.014206

C. Talon, M.A. Ramos, S. Vieira et al., Phys. Rev. B. 58, 745 (1998).

https://doi.org/10.1103/PhysRevB.58.745

M. Mizukami, H. Fujimori, and M. Oguni, Solid State Comm. 100, 83 (1996).

https://doi.org/10.1016/0038-1098(96)00365-1

D. Ceccaldi, Phys. Rev. B. 31, 8221 (1985).

https://doi.org/10.1103/PhysRevB.31.8221

R.M. Ibberson, S. Parsons, D.R. Allan et al., Acta Cryst. B. 64, 573 (2008).

https://doi.org/10.1107/S0108768108025093

E. Bonjour, R. Calemczuk, R. Lagnier et al., J. de Phys. Colloq. 42, C6-63 (1981).

https://doi.org/10.1051/jphyscol:1981619

U. John and K.P.R. Nair, Spectrochim. Acta A. 61, 2555 (2005).

https://doi.org/10.1016/j.saa.2004.09.021

O. Andersson, R.G. Ross, and G. Backstrom, Mol. Phys. 66, 619 (1989).

https://doi.org/10.1080/00268978900100371

J.R. Durig, R.M. Ward, A.R. Conrad et al., Mol. Struct. 967, 99 (2010).

https://doi.org/10.1016/j.molstruc.2009.12.046

L.P. Singh and S.S.N. Murthy, J. Chem. Phys. 129, 094501 (2008).

https://doi.org/10.1063/1.2961036

N.V. Surovtsev, S.V. Adichtchev, J. Wiedersich et al., J. Chem. Phys. 119, 12399 (2003).

https://doi.org/10.1063/1.1623180

K. Kishimoto, J.J. Pinvidic, T. Matsuo et al., Proc. Jpn. Acad., Ser. B: Phys. Biol. Sci. 67, 66 (1991).

https://doi.org/10.2183/pjab.67.66

C.A. Angell, A. Dworkin, P. Figuiere et al., J. Chem. Phys. et Phys. Chim. Biol. 82, 773 (1985).

https://doi.org/10.1051/jcp/1985820773

L.C. Pardo, P. Lunkenheimer, and A. Loidl, J. Chem. Phys. 124, 124911 (2006).

https://doi.org/10.1063/1.2180786

V.A. Konstantinov, A.I. Krivchikov, O.A. Korolyuk et al., Physica B 54, 424 (2013).

A.I. Krivchikov, V.G. Manzhelii, O.A. Korolyuk et al., Phys. Chem. Chem. Phys. 7, 728 (2005).

https://doi.org/10.1039/b418602h

A.I. Krivchikov, B.Ya. Gorodilov, and O.A. Korolyuk, Instr. Exper. Techn. 48, 417 (2005).

https://doi.org/10.1007/s10786-005-0074-2

O.A. Korolyuk, Fiz. Nizk. Temp. 37, 526 (2011).

A. Ramos and U. Buchenau, Phys. Rev. B 55, 5749 (1997).

https://doi.org/10.1103/PhysRevB.55.5749

Downloads

Published

2018-10-19

How to Cite

Krivchikov, A. I., Vdovychenko, G. A., Korolyuk, O. A., & Romantsova, O. O. (2018). Thermal Conductivity of Molecular Crystals with Self-Organizing Disorder. Ukrainian Journal of Physics, 59(3), 319. https://doi.org/10.15407/ujpe59.03.0319

Issue

Section

Solid matter