Quantitative Analysis of Complex Formation in Acetone–Chloroform and Ethyl Acetate–Cyclohexane Solutions

  • O. O. Ilchenko Taras Shevchenko National University of Kyiv
  • V. V. Nikonova Taras Shevchenko National University of Kyiv
  • A. M. Kutsyk Taras Shevchenko National University of Kyiv
  • V. V. Obukhovsky Taras Shevchenko National University of Kyiv
Keywords: acetone–chloroform, ethyl acetate–cyclohexane, complex, IR spectroscopy of solutions

Abstract

The actual binary (double) solutions of “acetone–chloroform” and “ethyl acetate–cyclohexane” are simulated as ideal multi-component (triple, quadruple) mixtures, which consist of associates [Ap], [Bq], and complexes [AnBm]. The MCR-ALS method is used for the analysis of near-IR absorption spectra. Complexes of a single type [A1B1] are determined in an acetone–chloroform solution, and complexes of two types, [X1Y1] and [X5Y1], are determined in an ethyl acetate–cyclohexane solution. An auxiliary method for determining the number of complexes by analyzing the residual intensity in the IR spectra is proposed. Information about the number of complexes in solutions obtained by analyzing the residual intensity correlates with the MCR-ALS data. It is used for the interpretation of the formation of complexes in binary solutions.

References

D.S. Abrams and J.M. Prausnitz, AlChE J. 21, 116 (1975).

https://doi.org/10.1002/aic.690210115

D. Chandler and L. Pratt, J. Chem. Phys. 65, 2925 (1976).

https://doi.org/10.1063/1.433529

L. Pratt and D. Chandler, J. Chem. Phys. 68, 4202 (1978).

https://doi.org/10.1063/1.436284

R. Nomen, J. Sempere, and K. Aviles, Chem. Eng. Sci. 56, 6577 (2001).

https://doi.org/10.1016/S0009-2509(01)00347-5

V. Obukhovsky and V. Nikonova. Ukr. J. Phys. 55, 891 (2010).

V. Obukhovsky, V. Nikonova, and O. Ilchenko, Visn. Kyiv. Univ. 16, 41 (2011).

P.C. Carman, J. Phys. Chem. 71, 2565 (1967).

https://doi.org/10.1021/j100867a027

L. Sarolea-Mathot, Trans. Faraday Soc. 49, 8 (1953).

https://doi.org/10.1039/TF9534900008

A.N. Campbell and E.M. Kartzmark, Canad. J. Chem. 38, 652 (1960).

https://doi.org/10.1139/v60-094

V.A. Durov and I.Yu. Shilov, J. Chem. Soc. Faraday Trans. 92, 3559 (1996).

https://doi.org/10.1039/FT9969203559

G.A. Alper, M.Yu. Nikiforov, A.N. Petrov, and G.A. Krestov, Zh. Obshch. Khim. 61, 837 (1991).

G. Chapman and K.E. Gubbins, Pure Appl. Chem. 59, 53 (1987).

https://doi.org/10.1351/pac198759010053

V.P. Belousov and A.G. Morachevsky, Heats of Mixing (Khimiya, Leningrad, 1970) (in Russian).

O. Ilchenko, V. Obukhovsky, V. Nikonova, V. Lemeshko, and A. Kutsyk, Visn. Kyiv. Univ. 17, 34 (2012).

M.J. Pelletier, Appl. Spectrosc. 47, 69 (1993).

https://doi.org/10.1366/0003702934048550

R. Tauler, B. Kowalski, and S. Fleming, Anal. Chem. 65, 2040 (1993).

https://doi.org/10.1021/ac00063a019

W.H. Lawton and E.A. Sylvestre, Technometrics 13, 617 (1971).

https://doi.org/10.1080/00401706.1971.10488823

R. Laenen, G.M. Gale, and N. Lascoux, J. Phys. Chem. A 103, 10708 (1999).

https://doi.org/10.1021/jp9920747

R. Tauler, A.K. Smilde, and B.R. Kowalski, J. Chemometrics 9, 31 (1995).

J. Jaumot, R. Gargalloa, A. de Juan, and R. Tauler, Chemom. Intell. Lab. Sys. 76, 101 (2005).

https://doi.org/10.1016/j.chemolab.2004.12.007

R. Tauler, J. Chemometrics 15, 627 (2001).

J. Jaumot and R. Tauler, Chemom. Intell. Lab. Sys. 10, 96 (2010).

https://doi.org/10.1016/j.chemolab.2010.05.020

A. de Juan, H. Vander Heyden, R. Tauler, and D.L. Massart, Anal. Chim. Acta 346, 307 (1997).

https://doi.org/10.1016/S0003-2670(97)90069-6

J.S. Wong, W.H. Green, C. Cheng, and C.B. Moore, J. Chem. Phys. 86, 5994 (1987).

https://doi.org/10.1063/1.452486

J. Hamilton and P. Gemperline, J. Chemometrics 4, 1 (1990).

Published
2018-10-19
How to Cite
Ilchenko, O., Nikonova, V., Kutsyk, A., & Obukhovsky, V. (2018). Quantitative Analysis of Complex Formation in Acetone–Chloroform and Ethyl Acetate–Cyclohexane Solutions. Ukrainian Journal of Physics, 59(3), 268. https://doi.org/10.15407/ujpe59.03.0268
Section
Soft matter