Two-Particle Photodisintegration of 4He: 4He(y, d)d, 4he(y, p)T, 4he(y, n)3He

  • O. E. Koshchii V.N. Karazin Kharkiv National University
  • P. E. Kuznietsov Institute of Electrophysics and Radiation Technologies, Nat. Acad. of Sci. of Ukraine
Keywords: gauge invariance, vertex function, photodisintegration of 4He, regular amplitude

Abstract

Using a covariant diagram technique and the concept of a nucleus as an elementary particle, we calculated the differential cross-sections for two-particle photodisintegration reactions of 4He. The only functional parameter is the vertex structure function, which describes the “collapse” of 4He nucleus and the nucleon remnants. The interaction of a real photon is determined by the value of particles charge, since the electromagnetic (EM) form factors are calculated at the photon point. The inseparability property of the electric charge from the particle mass allowed us to match the energy-momentum and charge conservation laws in the interaction. Therefore, the requirement of gauge symmetry is immediately satisfied. The covariant amplitude of the process equals to the sum of pole diagrams and the regular part, which is added to fulfil the EM current conservation requirement.

References

Yu.A. Kasatkin, Phys. of Part. and Nucl. Lett. 1, 30 (2004).

Yu.A. Kasatkin, Phys. of Part. and Nucl. Lett. 6, 41 (2009).

https://doi.org/10.1134/S1547477109010051

Yu.A. Kasatkin, Phys. of Part. and Nucl. Lett. 7, 175 (2010).

https://doi.org/10.1134/S1547477110020056

D.M. Scopic, Y.M. Shin et al., Phys. Rev. C 9, 531 (1974).

https://doi.org/10.1103/PhysRevC.9.531

Yu.A. Akimov et al., JETP 14, 512 (1962).

J.A. Poirier and M. Pripstein, Phys. Rev. 130, 1171 (1963).

https://doi.org/10.1103/PhysRev.130.1171

R.W. Zurmuhle, W. Stephens, and H. Strauh, Phys. Rev. 132, 751 (1963).

https://doi.org/10.1103/PhysRev.132.751

J. Asbury and F. Loeffler, Phys. Rev. B 37, 124 (1965).

W.E. Meyerhoff et al., Nucl. Phys. A 131, 489 (1969).

https://doi.org/10.1016/0375-9474(69)90590-9

D.M. Scopic and W.R. Dodge, Phys. Rev. C 6, 43 (1972).

https://doi.org/10.1103/PhysRevC.6.43

J.M. Poutissou and W.D. Bianco, Nucl. Phys. A 199, 517 (1973).

https://doi.org/10.1016/0375-9474(73)90595-2

S. Mellema, T.R. Wang, and W. Haeberli, Phys. Rev. C 34, 2043 (1986).

https://doi.org/10.1103/PhysRevC.34.2043

H.R. Welter et al., Phys. Rev. C 34, 32 (1986).

https://doi.org/10.1103/PhysRevC.34.32

B.H. Flowers and F. Mandl, Proc. Roy Soc. 206, 131 (1951).

https://doi.org/10.1098/rspa.1951.0060

F. Ahmed and S.M. Chowdhury, Nucl. Phys. A 141, 664 (1970).

https://doi.org/10.1016/0375-9474(70)90996-6

D.R. Thompson, Nucl. Phys. A 154, 442 (1970).

https://doi.org/10.1016/0375-9474(70)90168-5

D.R. Thompson, Nucl. Phys. A 143, 304 (1970).

https://doi.org/10.1016/0375-9474(70)90565-8

I.S. Shapiro, Theory of Direct Nuclear Reactions (Atomizdat, Moscow, 1963) (in Russian).

V.V. Anisovich, M.N. Kobrinsky, J. Nyiri, and Yu.M. Shabelski, Quark Model and High Energy Collisions (World Scientific, Singapore, 2004).

https://doi.org/10.1142/5427

F.M. Renard et al., Nuovo Cim. 38, 552 (1965).

https://doi.org/10.1007/BF02750483

F.M. Renard et al., Nuovo Cim. 38, 1688 (1965).

https://doi.org/10.1007/BF02750088

A.A. Zayats, V.A. Zolenko, Yu.A. Kasatkin, and A.P. Korzh, Phys. At. Nucl. 57, 798 (1994).

R. Schiavilla and V.R. Pandharipande, Nucl. Phys. A 449, 219 (1986).

https://doi.org/10.1016/0375-9474(86)90003-5

M. Gari and H. Hebach, Phys. Rep. 72, 1 (1981).

https://doi.org/10.1016/0370-1573(81)90008-9

Yu.A. Kasatkin, I.K. Kirichenko, V.F. Klepikov, and A.P. Korzh, Nonlocal Interactions in Quantum Electrodynamics (Studtsentr, Khar'kov, 2009) (in Russian).

S.B. Dubovichenko, Properties of Light Nuclei in the Potential Cluster Model (Deneker, Moscow, 2004) (in Russian).

Published
2018-10-18
How to Cite
Koshchii, O., & Kuznietsov, P. (2018). Two-Particle Photodisintegration of 4He: 4He(y, d)d, 4he(y, p)T, 4he(y, n)3He. Ukrainian Journal of Physics, 59(2), 193. https://doi.org/10.15407/ujpe59.02.0193
Section
General problems of theoretical physics