Effect of the Relative Spatial Arrangement of a Metal Nanoshell and an LH2 Complex of Photosynthetic Bacteria on the Optical Properties of the Hybrid Light-Harvesting Structure

Authors

  • G. V. Vertsimakha Institute for Nuclear Research, Nat. Acad. of Sci. of Ukraine

DOI:

https://doi.org/10.15407/ujpe59.02.0158

Keywords:

light-harvesting complex, nanoparticle, exciton, plasmon, photosynthetic bacterium

Abstract

The influence of the relative spatial arrangement of a silver nanoshell and a peripheral LH2 complex of photosynthetic bacteria on the light absorption enhancement by the hybrid light-harvesting complex has been studied theoretically. The enhancement of light absorption in the interval of the B850 exciton band arises owing to the strong interaction between excitons in the LH2 ring and surface plasmons in the nanoshell. The range of hybrid structure parameters has been determined, at which the enhancement of the photosynthesis process efficiency in the presence of a silver nanoshell is possible.

References

A.V. Zayats, I.I. Smolyaninov, and A.A. Maradudin, Phys.Rep. 408, 131 (2005).

https://doi.org/10.1016/j.physrep.2004.11.001

K. Aslan, J.R. Lakowicz, and C.D. Geddes, Curr. Opin. Chem. Biol. 9, 538 (2005).

https://doi.org/10.1016/j.cbpa.2005.08.021

J. Tominaga, C. Mihalcea, D. Buechel et al., Appl. Phys.Lett. 78, 2417 (2001).

https://doi.org/10.1063/1.1367905

K. Kneipp, Y. Wang, H. Kneipp et al., Phys. Rev. Lett. 78, 1667 (1997).

https://doi.org/10.1103/PhysRevLett.78.1667

W. Zhang, A.O. Govorov, and G.W. Bryant, Phys. Rev. Lett. 97, 146804 (2006).

https://doi.org/10.1103/PhysRevLett.97.146804

S.M. Sadeghi, Phys. Rev. B 79, 233309 (2009).

https://doi.org/10.1103/PhysRevB.79.233309

V.I. Sugakov and G.V. Vertsimakha, Phys. Rev. B 81, 235308 (2010).

https://doi.org/10.1103/PhysRevB.81.235308

P. Anger, P. Bharadwaj, and L. Novotny, Phys. Rev. Lett. 96, 113002 (2006).

https://doi.org/10.1103/PhysRevLett.96.113002

S. Kuhn, U. Hakanson, L. Rogobete, and V. Sandoghdar, Phys. Rev. Lett. 97, 017402 (2006).

https://doi.org/10.1103/PhysRevLett.97.017402

V. Nagarajan and W.W. Parson, Biochemistry 36, 2300 (1997).

https://doi.org/10.1021/bi962534b

L. Bujak, D. Piatkowski, S. Mackowski et al., Acta Phys. Pol. A 116, S22 (2009).

https://doi.org/10.12693/APhysPolA.116.S-22

L. Bujak, B. Krajnik, M. Olejnik et al., Photonics Lett. Pol. 4, 14 (2012).

L.Du, Y.Huang, B.Ren, and Y.Weng, J. Phys. Chem. C 116, 6993 (2012).

https://doi.org/10.1021/jp211841a

I. Carmeli, I. Lieberman, L. Kraversky et al., Nano Lett. 10, 2069 (2011).

https://doi.org/10.1021/nl100254j

N. Czechowski, P. Nyga, M.K. Schmidt et al., Plasmonics 7, 115 (2012).

https://doi.org/10.1007/s11468-011-9283-7

S.R. Beyer, S. Ullrich, S. Kudera et al., Nano Lett. 11, 4897 (2011).

https://doi.org/10.1021/nl202772h

A. Govorov and I. Carmeli, Nano Lett. 7, 620 (2007).

https://doi.org/10.1021/nl062528t

I. Kim, S.L. Bender, J. Hranisavljevic et al., Nano Lett. 11, 3091 (2011).

https://doi.org/10.1021/nl2010109

S. Mackowski, J. Phys. Condens. Matter 22, 193118 (2010).

https://doi.org/10.1088/0953-8984/22/19/193102

A.S. Davydov, Theory of Molecular Excitons (Plenum Press, New York, 1971).

https://doi.org/10.1007/978-1-4899-5169-4

X. Hu and X. Schulten, Phys. Today 50, No. 8, 28 (1997).

https://doi.org/10.1063/1.881879

I.Yu. Goliney, V.I. Sugakov, L. Valkunas, and G.V. Vertsimakha, Chem. Phys. 404, 116 (2012).

https://doi.org/10.1016/j.chemphys.2012.03.011

R. Van Grondelle and V. I. Novoderezhkin, Nature 463, 614 (2010).

https://doi.org/10.1038/463614a

M.Z. Papiz, S.M. Prince, A.M. Hawthornthwaite-Lawless et al., Science 1, 198 (1996).

R.E. Blankenship, Molecular Mechanisms of Photosynthesis (Wiley-Blackwell, Malden, MA, 2002).

https://doi.org/10.1002/9780470758472

G. McDermott, S.M. Prince, A.A. Freer et al., Nature 374, 517 (1995).

https://doi.org/10.1038/374517a0

J. Koepke, X. Hu, C. Muenke et al., Structure 4, 581 (1996).

https://doi.org/10.1016/S0969-2126(96)00063-9

V. Novoderezhkin and A. Razjivint, Biophys. J. 68, 1089 (1995).

https://doi.org/10.1016/S0006-3495(95)80283-3

V. Urboniene, O. Vrublevskaja, A. Gall et al., Photosyn. Res. 86, 49 (2005).

https://doi.org/10.1007/s11120-005-2748-9

V. Urboniene, O. Vrublevskaja, G. Trinkunas et al., Biophys. J. 93, 2188 (2007).

https://doi.org/10.1529/biophysj.106.103093

M.V. Mostovoy and J.Knoerster, J. Phys.Chem. B 104, 104 (2000).

https://doi.org/10.1021/jp001519k

R.J. Gordell and J. Konler, Biochem. J. 422, 193 (2009).

https://doi.org/10.1042/BJ20090674

J. Strumpfer and K. Schultena, J. Chem. Phys. 131, 225101 (2009).

https://doi.org/10.1063/1.3271348

M.H.C. Koolhaas, G. van der Zwan, and R. van Grondelle, J. Phys. Chem. B 104, 4489 (2000).

https://doi.org/10.1021/jp9918149

S. Kalele, S.W. Gosavi, J. Urban, and S.K. Kulkarni, Curr. Sci. 91, 1038 (2006).

D. Shamiryan, T. Abell, F. Iacopia et al., Mat. Today 7, 34 (2004).

https://doi.org/10.1016/S1369-7021(04)00053-7

X.W.D. Lou, L.A. Archer, and Z. Yang, Adv. Mater. 20, 3987 (2008).

https://doi.org/10.1002/adma.200800854

M. Sukharev, J. Sung, K.G. Spears et al., Phys. Rev. B 76, 184302 (2007).

https://doi.org/10.1103/PhysRevB.76.184302

E. Prodan and P. Norlander, Nano Lett. 3, 543 (2003).

https://doi.org/10.1021/nl034030m

K.-H. Rhee, Annu. Rev. Biophys. Biomol. Struct. 30, 307 (2001).

https://doi.org/10.1146/annurev.biophys.30.1.307

E.H. Pape, W. Menke, D. Weick et al., Biophys. J. 30, 221 (1974).

https://doi.org/10.1016/S0006-3495(74)85909-6

J.D. Olsen, J.D. Tucker, J.A. Timney et al., J. Biol. Chem. 283, 30772 (2008).

https://doi.org/10.1074/jbc.M804824200

Published

2018-10-18

How to Cite

Vertsimakha, G. V. (2018). Effect of the Relative Spatial Arrangement of a Metal Nanoshell and an LH2 Complex of Photosynthetic Bacteria on the Optical Properties of the Hybrid Light-Harvesting Structure. Ukrainian Journal of Physics, 59(2), 158. https://doi.org/10.15407/ujpe59.02.0158

Issue

Section

Nanosystems