Relaxation at Nonlinear Ferromagnetic Resonance

Authors

  • A. Yu. Vidil Taras Shevchenko National University of Kyiv
  • I. V. Zavislyak Taras Shevchenko National University of Kyiv
  • M. O. Popov Taras Shevchenko National University of Kyiv

DOI:

https://doi.org/10.15407/ujpe59.02.0141

Keywords:

nonlinear ferromagnetic resonance, relaxation term, magnetic crystallographic anisotropy

Abstract

Nonlinear ferromagnetic resonance in yttrium iron garnet films have been studied both experimentally and theoretically. It is shown that the application of Landau–Lifshitz equation with a relaxation term in the Gilbert form brings about a qualitatively incorrect result in the determination of the Q-factor for a magnetostatic microwave resonator, because the theory predicts a growth of the Q-factor, when the pump signal power increases to a critical value, above which the foldover phenomenon occurs. When using a modified relaxation term in the form of a power series in the time derivative of the magnetization, the results of calculations coincide with experimental ones to a sufficient accuracy. The nonlinearity term (coefficient) in the equation for the uniform precession is shown to depend on the fields of uniaxial anisotropy of the first and second orders. This fact can be used to affect the characteristics of nonlinear processes in ferromagnets.

References

L.D. Landau and E.M. Lifshitz, Phys. Zs. Sowjet. 8, 153 (1935).

T. Gilbert, IEEE Trans. Magn. 40, 3443 (2004).

https://doi.org/10.1109/TMAG.2004.836740

J.A. Katine, F.J. Albert, R.A. Buhrman, E.B. Myers, and D.C. Ralph, Phys. Rev. Lett. 84, 3149 (2000).

https://doi.org/10.1103/PhysRevLett.84.3149

S.I. Kiselev, J.C. Sankey, I.N. Krivorotov, N.C. Emley, R.J. Schoelkopf, R.A. Buhrman, and D.C. Ralph, Nature 425, 380 (2003).

https://doi.org/10.1038/nature01967

Q. Mistral, J.V. Kim, T. Devolder, P. Crozat, C. Chappert, J.A. Katine, M.J. Carey, and K. Ito, Appl. Phys. Lett. 88, 192507 (2006).

https://doi.org/10.1063/1.2201897

V. Tiberkevich and A. Slavin, Phys. Rev. B 75, 014440 (2007).

https://doi.org/10.1103/PhysRevB.75.014440

V.G. Bar'yakhtar and A.G. Danilevich, Fiz. Nizk. Temp. 36, 385 (2010).

P.W. Anderson and H. Suhl, Phys. Rev. 100, 1788 (1955).

https://doi.org/10.1103/PhysRev.100.1788

Yu. Fetisov, C. Patton, and V. Synogach, IEEE Trans. Magn. 35, 4511 (1999).

https://doi.org/10.1109/20.809144

Yu. Fetisov and C. Patton, IEEE Trans. Magn. 40, 473 (2004).

https://doi.org/10.1109/TMAG.2004.824132

G.V. Skrotskii and Yu.I. Alimov, Zh. Eksp. Teor. Fiz. 36, 1267 (1959).

P. Gottlieb, J. Appl. Phys. 31, 2059 (1960).

https://doi.org/10.1063/1.1735497

A.G. Gurevich and G.A. Melkov, Magnetization Oscillations and Waves (CRC Press, Boca Raton, 1996).

M.A. Popov and I.V. Zavislyak, Zh. Tekhn. Fiz. 78, 82 (2008).

V.S. L'vov, Nonlinear Spin Waves (Nauka, Moscow, 1994) (in Russian).

M.I. Rabinovich and D.I. Trubetskov, Introduction to the Theory of Oscillations and Waves (Kluwer, Dordrecht, 1989).

https://doi.org/10.1007/978-94-009-1033-1

P.R.T. Pugh, J.G. Booth, J.W. Boyle, J.A. Cowen, A.D. Boardman, I. Zavislyak, V. Bobkov, and V. Romanyuk, J. Magn. Magn. Mater. 196, 498 (1999).

https://doi.org/10.1016/S0304-8853(98)00849-X

D.B. Nicholson, Hewlett-Packard J. 41, 59 (1990).

M.A. Popov and I.V. Zavislyak, Pis'ma Zh. Tekhn. Fiz. 38, 18 (2012).

F.J. Tischer, Mikrowellen-Meßtechnik (Springer, Berlin, 1958).

https://doi.org/10.1007/978-3-642-87504-5

Published

2018-10-18

How to Cite

Vidil, A. Y., Zavislyak, I. V., & Popov, M. O. (2018). Relaxation at Nonlinear Ferromagnetic Resonance. Ukrainian Journal of Physics, 59(2), 141. https://doi.org/10.15407/ujpe59.02.0141

Issue

Section

Solid matter