Microstructure of He II in the Presence of Boundaries

Authors

  • M. D. Tomchenko Bogolyubov Institute for Theoretical Physics, Nat. Acad. of Sci. of Ukraine

DOI:

https://doi.org/10.15407/ujpe59.02.0123

Keywords:

Bose particles, Bogolyubov dispersion law, Bose liquid, Bose gas

Abstract

We have studied the microstructure of a system of interacting Bose particles under zero boundary conditions and have found two possible orderings. One ordering is traditional and is characterized by the Bogolyubov dispersion law E(k) ≈ √︂((︁h^2*k^2/2m)^2) + qnv3(k) ~ (h^2*k^2/m) (q = 1) at a weak interaction. The second one is new and is characterized by the same dispersion law, but with q = 2^−d, where d is the number of noncyclic coordinates. At a weak interaction, the ground-state energy is less for the new solution. The boundaries affect the bulk microstructure due to the difference of the topologies of closed and open systems.

References

R. Balescu, Equilibrium and Nonequilibrium Statistical Mechanics, (Wiley, New York, 1975).

E.H. Lieb and W. Liniger, Phys. Rev. 130, 1605 (1963);

https://doi.org/10.1103/PhysRev.130.1605

E.H. Lieb, Phys. Rev. 130, 1616 (1963).

https://doi.org/10.1103/PhysRev.130.1616

M. Gaudin, Phys. Rev. A 4, 386 (1971);

https://doi.org/10.1103/PhysRevA.4.386

M. Gaudin, La Fonction d'Onde de Bethe (Masson, Paris, 1983).

S. Stringari, Phys. Rev. Lett. 77, 2360 (1996).

https://doi.org/10.1103/PhysRevLett.77.2360

E. Zaremba, Phys. Rev. A 57, 518 (1998).

https://doi.org/10.1103/PhysRevA.57.518

M.A. Cazalilla, J. Phys. B: AMOP 37, S1 (2004).

https://doi.org/10.1088/0953-4075/37/7/051

N.N. Bogoliubov, J. Phys. USSR 11, 23 (1947).

N.N. Bogoliubov and D.N. Zubarev, Sov. Phys. JETP 1, 83 (1956).

L. Reatto and G.V. Chester, Phys. Rev. 155, 88 (1967).

https://doi.org/10.1103/PhysRev.155.88

C.E. Campbell, Phys. Lett. A 44, 471 (1973).

https://doi.org/10.1016/0375-9601(73)90980-8

E. Feenberg, Ann. Phys. 84, 128 (1974).

https://doi.org/10.1016/0003-4916(74)90296-6

I.A. Vakarchuk and I.R. Yukhnovskii, Theor. Math. Phys. 40, 626 (1979).

https://doi.org/10.1007/BF01019246

P.A.Whitlock, D.M. Ceperley, G.V. Chester, and M.H. Kalos, Phys. Rev. B 19, 5598 (1979).

https://doi.org/10.1103/PhysRevB.19.5598

M.H. Kalos, M.A. Lee, P.A. Whitlock, and G.V. Chester, Phys. Rev. B 24, 115 (1981).

https://doi.org/10.1103/PhysRevB.24.115

E. Krotscheck, Phys. Rev. B 33, 3158 (1986).

https://doi.org/10.1103/PhysRevB.33.3158

J.L. Epstein and E. Krotscheck, Phys. Rev. B 37, 1666 (1988).

https://doi.org/10.1103/PhysRevB.37.1666

T. MacFarland, S.A. Vitiello, L. Reatto, G.V. Chester, and M.H. Kalos, Phys. Rev. B 50, 13577 (1994).

https://doi.org/10.1103/PhysRevB.50.13577

L. Reatto, G.L. Masserini, and S.A. Vitiello, Physica B 197, 189 (1994).

https://doi.org/10.1016/0921-4526(94)90213-5

I.O. Vakarchuk, V.V. Babin, and A.A. Rovenchak, J. Phys. Stud. 4, 16 (2000).

M. Tomchenko, Low Temp. Phys. 32, 38 (2006).

https://doi.org/10.1063/1.2160507

L. Reatto, J. Low Temp. Phys. 87, 375 (1992).

https://doi.org/10.1007/BF00114910

D.M. Ceperley, Rev. Mod. Phys. 67, 279 (1995).

https://doi.org/10.1103/RevModPhys.67.279

M.D. Tomchenko, arXiv:cond-mat/0904.4434.

I.A. Vakarchuk and I.R. Yukhnovskii, Theor. Math. Phys. 42, 73 (1980).

https://doi.org/10.1007/BF01019263

M.D. Tomchenko, Ukr. J. Phys. 50, 720 (2005).

E. Zaremba and W. Kohn, Phys. Rev. B 15, 1769 (1977).

https://doi.org/10.1103/PhysRevB.15.1769

K.V. Grigorishin and B.I. Lev, Ukr. J. Phys. 56, 1182 (2011).

L.D. Landau and E.M. Lifshitz, Quantum Mechanics. Non-Relativistic Theory (Pergamon Press, New York, 1980).

S.A. Yushchenko, private communication.

A. Bijl, Physica 7, 869 (1940).

https://doi.org/10.1016/0031-8914(40)90166-5

M.D. Girardeau, J. Math. Phys. 6, 1083 (1965).

https://doi.org/10.1063/1.1704372

K. Huang, Statistical Mechanics (Wiley, New York, 1987), Chapter 19.

A.R. Jansen and R.A. Aziz, J. Chem. Phys. 107, 914 (1997).

https://doi.org/10.1063/1.474444

W. Cencek, M. Przybytek, J. Komasa, J.B. Mehl, B. Jeziorski, and K. Szalewicz, J. Chem. Phys. 136, 224303 (2012).

https://doi.org/10.1063/1.4712218

R.P. Feynman, Phys. Rev. 94, 262 (1954).

https://doi.org/10.1103/PhysRev.94.262

R.P. Feynman and M. Cohen, Phys. Rev. 102, 1189 (1956).

https://doi.org/10.1103/PhysRev.102.1189

L.P. Pitaevskii, Sov. Phys. JETP 9, 830 (1959).

M. Tomchenko, arXiv:cond-mat/1211.1723; Dispersion levels of an interacting Bose gas in a one-dimensional vessel (in preparation).

L.D. Landau and E.M. Lifshitz, Statistical Physics, Part 1 (Pergamon Press, Oxford, 1980).

D. Ruelle, Statistical Mechanics. Rigorous Results (Benjamin, New York, 1969).

M. Kline, Mathematics. The Loss of Certainty (Oxford Univ. Press, New York, 1980), Chapter 9.

I.M. Khalatnikov, An Introduction to the Theory of Superfluidity (Perseus, Cambridge, 2000), Chapter 1.

T. Kebukawa, S. Yamasaki, and S. Sunakawa, Progr. Theor. Phys. 44, 565 (1970).

https://doi.org/10.1143/PTP.44.565

M. Tomchenko, arXiv:cond-mat/1204.2149.

H.B.G. Casimir, Proc. Kon. Nederl. Akad. Wet. 51, 793 (1948).

V.M. Mostepanenko and N.N. Trunov, Sov. Phys. Usp. 31, 965 (1988).

https://doi.org/10.1070/PU1988v031n11ABEH005641

Downloads

Published

2018-10-18

How to Cite

Tomchenko, M. D. (2018). Microstructure of He II in the Presence of Boundaries. Ukrainian Journal of Physics, 59(2), 123. https://doi.org/10.15407/ujpe59.02.0123

Issue

Section

Soft matter