Features of Ultrasound Absorption by Dislocations in Subgrain-Free Cd0.2Hg0.8Te Crystals

  • I. O. Lysyuk V.E. Lashkaryov Institute of Semiconductor Physics, Nat. Acad. of Sci. of Ukraine
  • Ya. M. Olikh V.E. Lashkaryov Institute of Semiconductor Physics, Nat. Acad. of Sci. of Ukraine
  • O. Ya. Olikh Taras Shevchenko National University of Kyiv, Faculty of Physics
  • G V. Beketov V.E. Lashkaryov Institute of Semiconductor Physics, Nat. Acad. of Sci. of Ukraine
Keywords: ultrasound, dislocations, CdxHg1−xTe


The temperature dependence of the ultrasound wave absorption in bulk p-Cd0.2Hg0.8Te crystals free from low-angle grain boundaries has been studied experimentally for the first time in the frequency range 10–55 MHz and the temperature interval 150–300 K, and the corresponding results of measurements are presented. The maximum value of absorption coefficient is found to increase and to shift toward higher temperatures, as the ultrasound frequency grows. The results obtained can be satisfactorily explained in the framework of the Brailsford model, which associates the ultrasound absorption with vibrations of thermally activated dislocation kinks. The characteristic parameters of this model for p-Cd0.2Hg0.8Te are determined; namely, the frequency coefficient fk ≈ 6×10^9 Hz and the kink diffusion activation energy Wk ≈ 0.11 eV. The dislocation concentration is also evaluated (a ≈ 2×10^10 m^−2), with the determined value being consistent with that obtained by the selective etching method (0.7×10^10 m^−2).


V.P. Ponomarenko, Usp. Fiz. Nauk 173, 649 (2003).


S.G. Gasan-Zade, M.V. Strikha, and G.A. Shepelskyi, Ukr. Fiz. Zh. Rev. 5, 3 (2009).

I.V. Ostrovskyi and O.O. Korotchenkov, Acoustooptics (Vyshcha Shkola, Kyiv, 2003) (in Ukrainian).

Ja. Olikh and O. Olikh, Sensor Electron. Microsyst. Technol. 1, 19 (2004).

A.M. Gorb, O.A. Korotchenkov, O.Ya. Olikh, and A.O. Podolian, IEEE Trans. Nucl. Sci. 57, 1632 (2010).


Ya.M. Olikh and Yu.N. Shavlyuk, Phys. Solid State 38, 1835 (1996).

A.N. Annaniyazov, A.E. Belyaev, V.V. Dyakin, A.P. Zdebskyi, and V.V. Koval, Ukr. Fiz. Zh. 32, 912 (1987).

Ya.M. Olikh, E.A. Salkov, and K.R. Kurbanov, Fiz. Tekh. Poluprovodn. 19, 762 (1985).

A.N. Annaniyazov, A.E. Belyaev, G. Garyagdiev, A.P. Zdebskyi, and E.A. Salkov, Ukr. Fiz. Zh. 33, 1694 (1988).

V.A. Kalitenko, Ya.M. Olikh, and V.M. Perga, Ukr. Fiz. Zh. 43, 788 (1998).

Ya.M. Olikh, K.S. Dubrova, and K.S. Sukhanov, Deposited Manuscr., No. 4726-B89 (VINITI, Moscow, 1989).

A. Granato and K. Lucke, J. Appl. Phys. 27, 583 (1956).


S.P. Nikanorov and B.K. Kardashov, Elasticity and Dislocation Inelasticity of Crystals (Nauka, Moscow, 1985) (in Russian).

A.A. Blistanov, V.V. Geraskin, and E.S. Soboleva, in Mechanisms of Internal Friction in Semiconducting and Metallic Materials (Nauka, Moscow, 1972), p. 40 (in Russian).

R. Truell, C. Elbaum, and B. Chik, Ultrasonic Methods in Solid State Physics (Academic Press, New York, 1969).

A.N. Vasil'ev, Fiz. Tekh. Poluprovodn. 21, 944 (1987).

V.F. Machulin, Ya.M. Olikh, and I.O. Lysyuk, Ukr. Fiz. Zh. 45, 1341 (2000).

A.D. Brailsford, Phys. Rev. 122, 778 (1961).


Properties of Narrow Gap Cadmium-Based Compounds, edited by P. Capper (INSPEC, Inst, of Electr. Eng., London, 1994).

Ya.M. Olikh, Dr. Sci. Thesis (Institute of Semiconductor Physics, Kyiv, 2011) (in Ukrainian).

V.I. Erofeev and V.P. Romashov, Pis'ma Zh. Tekhn. Fiz. 28, 6 (2002).

C.G. Morgan-Pond and R. Rashavan, Phys. Rev. B. 31, 6616 (1985).


T. Suzuki, S. Takeuchi, and H. Yoshinaga, Dislocation Dynamics and Plasticity (Springer, Berlin, 1991).


Ya.A. Agaev, G. Garyagdiev, Ya.M. Olikh, and K.S. Sukhanov, Izv. Akad. Nauk TSSR Ser. Fiz.-Tekhn. 4, 86 (1989).

J.P. Hirt and J. Lothe, Theory of Dislocations (McGrawHill, New York, 1968).

V.N. Ovsyuk, G.L. Kuryshev, Yu.G. Sidorov et al., Infrared Photodetector Arrays (Nauka, Novosibirsk, 2001) (in Russian).

V.M. Loktev and J. Khalack, J. Luminesc. 76-77, 560 (1998).

How to Cite
Lysyuk, I., Olikh, Y., Olikh, O., & Beketov, G. (2018). Features of Ultrasound Absorption by Dislocations in Subgrain-Free Cd0.2Hg0.8Te Crystals. Ukrainian Journal of Physics, 59(1), 50. https://doi.org/10.15407/ujpe59.01.0050
Solid matter