High-Efficiency Cadmium Telluride Detectors of X- And y-Radiation


  • O. L. Maslyanchuk Yu. Fed’kovich National University of Chernivtsi
  • T. Aoki Research Institute of Electronics, Shizuoka University
  • V. M. Sklyarchuk Yu. Fed’kovich National University of Chernivtsi
  • S. V. Melnychuk Yu. Fed’kovich National University of Chernivtsi
  • L. A. Kosyachenko Yu. Fed’kovich National University of Chernivtsi
  • E. V. Grushko Yu. Fed’kovich National University of Chernivtsi




CdTe-based X- and y-ray detectors, compensation of semiconductor conductivity, detector with a Schottky diode, charge collection efficiency, detection efficiency of a Schottky diode detector, width of the space charge region, concentration of uncompensated impurities, energy resolution


Electric parameters of chlorine-doped CdTe crystals with a resistivity of (3÷6)× ×10^9 Ω·cm have been studied. The heavily doped material was characterized by an almost intrinsic conductivity, which is explained on the basis of the charge-carrier statistics by an emergence of self-compensated complexes. The ionization energy and the compensation degree of the impurity responsible for the semiinsulating state of CdTe are determined. The reverse current-voltage characteristics of the Ni/CdTe/Ni structure with a Schottky diode are interpreted as those of X/y-radiation detectors with extremely low values of “dark” currents of about 5 nA at a voltage of 1500 V and a Schottky contact area of 0.1 cm2 (at 300 K). Results testifying to a detector energy resolution of 0.42% for the spectrum of 137Cs isotope at an applied voltage of 1200 V and a temperature of 300 K have been reported. The dependence of the detection efficiency on the concentration of noncompensated impurities (defects) N, which determines the width of the space charge region in the diode, is proved to be described by a function with a maximum located at N ≈ 2×1011 cm^−3 for 137Cs isotope. By comparing the spectra obtained while irradiating the detector from either the Schottky or ohmic contact side, the concentration of noncompensated impurities in the studied crystals (of about 1012 cm^−3) is determined, which is close to the optimum N value.


E.N. Arkadieva, O.A. Matveev, S.M. Ryvkin, and Yu.V. Rud', Zh. Tekhn. Fiz. 36, 1146 (1966).

E.N. Arkadieva, O.A. Matveev, S.M. Ryvkin, and Yu.V. Rud', Fiz. Tekh. Poluprovodn. 1, 805 (1967).

P. Siffert, B. Rabin, H.Y. Tabatabai, and R. Stuck, Nucl. Instrum. Methods 150, 31 (1978).


J.F. Butler, C.L. Lingren, and F.P. Doty, IEEE Trans. Nucl. Sci. 39, 605 (1992).


A. Burger, K. Chattopadhyay, H. Chen, J.-O. Ndap, X. Ma, S. Trivedi, S.-W. Kutcher, R. Chen, and R.-D. Rosemeier, J. Cryst. Growth 198/199, 872 (1999).


A. Mycielski, A. Burger, M. Sowinska, M. Groza, A. Szadkowski, P. Wojnar, B. Witkowska, W. Kaliszek, and P. Siffert, Phys. Status Solidi C 2, 1578 (2005).


A. Hossain, Y. Cui, A.E. Bolotnikov, G.S. Camarda, G. Yang, D. Kochanowska, M. Witkowska-Baran, A. Mycielski, and R.B. James, J. Electr. Mater. 38, 1593 (2009).


T. Takahashi, K. Hirose, C. Matsumoto, K. Takizawa, R. Ohno, T. Ozaki, K. Mori, and Y. Tomita, Proc. SPIE 3446, 29 (1998).


T. Takahashi, B. Paul, K. Hirose, S. Matsumoto, R. Ohno, T. Ozaki, K. Mori, and Y. Tomita, Nucl. Instrum. Methods A 436, 111 (1999).



Cs. Szeles, Phys. Status Solidi B 241, 783 (2004).


S.D. Sordo, L. Abbene, E. Caroli, A.M. Mancini, A. Zappettini, and P. Ubertini, Sensors 9, 3491 (2009).


C. Szeles, S.A. Soldner,S. Vydrin, J. Graves, and D.S. Bale. IEEE Trans. Nucl. Sci. 55, 572 (2008).



L.A. Kosyachenko and O.L. Maslyanchuk, Phys. Status Solidi C 2, 1194 (2005).


L.A. Kosyachenko, V.A. Gnatyuk, T. Aoki, V.M. Sklyarchuk, O.F. Sklyarchuk, and O.L. Maslyanchuk. Appl. Phys. Lett. 94, 092109 (2009).


L.A. Kosyachenko, V.M. Sklyarchuk, O.F. Sklyarchuk, O.L. Maslyanchuk, V.A. Gnatyuk, and T. Aoki, IEEE Trans. Nucl. Sci. 56, 1827 (2009).


L.A. Kosyachenko, C.P. Lambropoulos, T. Aoki, E. Dieguez, M. Fiederle, D. Loukas, O.V. Sklyarchuk, O.L. Maslyanchuk, E.V. Grushko, V.M. Sklyarchuk, J. Crocco, and H. Bensalah, Semicond. Sci. Technol. 27, 015007 (2012).


H. Shiraki, M. Funaki, Y. Ando, A. Tachibana, S. Kominami, and R. Ohno, IEEE Trans. Nucl. Sci. 56, 1717 (2009).


H. Shiraki, M. Funaki, Y. Ando, S. Kominami, K. Amemiya, and R. Ohno, IEEE Trans. Nucl. Sci. 57, 395 (2010).


D. Kanzer, J. Phys. C 6, 2967 (1973).

N. Peyghambarian, S.W. Koch, and A. Msyrowicz, Introduction to Semiconductor Optics, (Prentice-Hall, Englewood Cliffs, 1993).

T.E. Schlesinger, J.E. Toney, H. Yoon, E.Y. Lee, B.A. Brunett, L. Franks, and R.B. James, Mater. Sci. Eng. 32, 103 (2001).


L.A. Kosyachenko, V.M. Sklyarchuk, O.V. Sklyarchuk, and O.L. Maslyanchuk, Semiconductors 45, 1247 (2011).


B. Segal, M.R. Lorenz, and R.E. Halsted, Phys. Rev. 129, 2471 (1963).


I. Turkevych, R. Grill, J. Franc, E. Belas, P. Hoschl, and P. Moravec, Semicond. Sci. Technol. 17, 1064 (2002).


M. Prokesch and C. Szeles, Phys. Rev. B 75, 245204 (2007).


V. Babentsov, J. Franc, and R.B. James. Appl. Phys. Lett. 94, 052102 (2009).


K. Seeger, Semiconductor Physics (Springer, New York, Wien, 1973).


M. Hofmann, W. Stadler, P. Chrismann, and B.K. Meyer, Nucl. Instrum. Methods A 380, 117 (1996).


A. Castaldini, A. Cavallini, B. Fraboni, P. Fernandez, and J. Piqueras, J. Appl. Phys. 83, 2121 (1998).


M. Zha, E. Gombia, F. Bissoli, A. Zappettini, and L. Zanotti, Phys. Status Solidi C 3, 881 (2002).

G. Mandel, Phys. Rev. 134, A1073 (1964).


F.F. Morehead and G. Mandel, Phys. Rev. 137, A924 (1965).


M. Fiederle, C. Eiche, M. Salk, R. Schwarz, K.W. Benz, W. Stadler, D.M. Hofmann, and B.K. Meyer, J. Appl. Phys. 84, 6689 (1998).


M. Chu, S. Terterian, D. Ting, C.C. Wang, H.K. Gurgenian, and S. Mesropian, Appl. Phys. Lett. 79, 2728 (2001).


C.-T. Sah, R.N. Noyce, and W. Shockley, Proc. IRE 45, 1228 (1957).

L.A. Kosyachenko, V.P. Makhniy, and I.V. Potykevich, Ukr. J. Phys. 23, 279 (1978).

S.M. Sze and Kwok K. Ng, Physics of Semiconductor Devices, (Wiley Interscience, Murray Hill, NJ, 2006).


C. Canali, M. Martini, G. Ottaviani, and K.R. Zanio, Phys. Rev. B 4, 422 (1971).



C. Matsumoto, T. Takahashi, K. Takizawa, R. Ohno, T. Ozaki, and K. Mori, IEEE Trans. Nucl. Sci. 45, 428 (1998).


P.N. Luke and M. Amman, IEEE Trans. Nucl. Sci. 54, 834 (2007).


M. Lavagna, J.P. Pique, and Y. Marfaing, Solid State Electron. 20, 235 (1977).


K. Hecht, Z. Phys. 77, 235 (1932).




How to Cite

Maslyanchuk, O. L., Aoki, T., Sklyarchuk, V. M., Melnychuk, S. V., Kosyachenko, L. A., & Grushko, E. V. (2018). High-Efficiency Cadmium Telluride Detectors of X- And y-Radiation. Ukrainian Journal of Physics, 59(1), 17. https://doi.org/10.15407/ujpe59.01.0017



Solid matter

Most read articles by the same author(s)