Neutron Studies of the Structure of Non-Polar Magnetic Fluids with Surfactant Excess

  • L. A. Bulavin Taras Shevchenko National University of Kyiv, Faculty of Physics
  • A. V. Nagornyi Taras Shevchenko National University of Kyiv, Faculty of Physics, Joint Institute for Nuclear Research
  • V. I. Petrenko Taras Shevchenko National University of Kyiv, Faculty of Physics, Joint Institute for Nuclear Research
  • M. V. Avdeev Joint Institute for Nuclear Research
  • L. Alm´asy Institute for Solid State Physics and Optics, Wigner Research Centre for Physics, Hungarian Academy of Sciences
  • L. Rosta Institute for Solid State Physics and Optics, Wigner Research Centre for Physics, Hungarian Academy of Sciences
  • V. L. Aksenov B.P. Konstantinov Petersburg Nuclear Physics Institute, Joint Institute for Nuclear Research
Keywords: magnetic fluids, ferrofluids, small-angle neutron scattering, decalin

Abstract

Non-polar magnetic fluid systems with an excess of surfactants have been studied with the use of the small-angle neutron scattering technique. Two types of highly stable ferrofluids, magnetite/oleic acid/decalin and magnetite/myristic acid/decalin, with a low (of about 1 vol.%) magnetite content and various acid fractions (up to 25 vol.%) are examined. The aggregation of magnetic particles and surfactant molecules is shown not to occur in the indicated concentration range of the acid molecule excess. The experimental results testify to a change of the interaction between the molecules of oleic and myristic acids in the free (non-adsorbed) state, when they are dissolved in magnetic fluids, and in their solutions in decalin without magnetic particles.

References

B. Berkovsky and V. Bashtovoi, Magnetic Fluids and Applications. Handbook (Begell House, New York, 1996).

L. Vekas, M.V. Avdeev, and D. Bica, in Magnetic Nanofluids: Synthesis and Structure. Nanoscience and Its Applications in Biomedicine, edited by D. Shi (Springer, Berlin, 2009), p. 645.

U. H¨afeli and M. Zborowski, J. Magn. Magn. Mater. 321, 10 (2009).

https://doi.org/10.1016/j.jmmm.2009.03.008

V.E. Fertman, Magnetic Fluids (Vysheishaya Shkola, Minsk, 1988) (in Russian).

S. Taketomi and S. Chikazumi, Magnetic Fluids – Principle and Application (Nikkan Kogyo Shinbun, Tokyo, 1988) (in Japanese).

V.I. Petrenko, M.V. Avdeev, V.L. Aksenov et al., Poverkhnost Rentgen. Sinkhrotron. Neitron. Issled. 2, 92 (2009).

V.I. Petrenko, M.V. Avdeev, V.L. Aksenov et al., Solid State Phenom. 152, 198 (2009).

https://doi.org/10.4028/www.scientific.net/SSP.152-153.198

V.I. Petrenko, M.V. Avdeev, L. Alm’asy et al., Coll. Surf. A 337, 91 (2009).

https://doi.org/10.1016/j.colsurfa.2008.12.001

M.V. Avdeev, I.A. Bodnarchuk, V.I. Petrenko et al., Zh. Fiz. Khim. 83, 7 (2009).

V.I. Petrenko, M.V. Avdeev, V.M. Garamus et al., Coll. Surf. A 369, 160 (2010).

https://doi.org/10.1016/j.colsurfa.2010.08.023

M.V. Avdeev and V.L. Aksenov, Usp. Fiz. Nauk 180, 10 (2010).

https://doi.org/10.3367/UFNr.0180.201010a.1009

V.L. Aksenov, M.V. Avdeev, A.V. Shulenina et al., Kristallografiya 56, 848 (2011).

V.Yu. Bezzabotnov, L. Cser, T. Grosz et al., J. Phys. Chem. 96, 976 (1992).

https://doi.org/10.1021/j100181a079

G. Jancso, L. Cser, T. Grosz et al., Pure Appl. Chem. 66, 515 (1994).

https://doi.org/10.1351/pac199466030515

L. Cser, B. Farago, T. Grosz et al., Physica B 180, 848 (1992).

https://doi.org/10.1016/0921-4526(92)90489-F

M.V. Avdeev, D. Bica, L. Vekas et al., J. Coll. Interface Sci. 334, 37 (2009).

https://doi.org/10.1016/j.jcis.2009.03.005

J. Bloustine, T. Virmani, G.M. Thurston et al., Phys. Rev. Lett. 96, 087803 (2006).

https://doi.org/10.1103/PhysRevLett.96.087803

Published
2018-10-11
How to Cite
Bulavin, L., Nagornyi, A., Petrenko, V., Avdeev, M., Alm´asyL., Rosta, L., & Aksenov, V. (2018). Neutron Studies of the Structure of Non-Polar Magnetic Fluids with Surfactant Excess. Ukrainian Journal of Physics, 58(12), 1143. https://doi.org/10.15407/ujpe58.12.1143
Section
Soft matter

Most read articles by the same author(s)

1 2 > >>