Unified (p, q; a, y, l)-Deformations of Oscillator and Hybrid Oscillator Algebras and Two-Dimensional Conformal Field Theory

  • I. M. Burban Bogolyubov Institute for Theoretical Physics, Nat. Acad. of Sci. of Ukraine
Keywords: generalized deformed oscillator algebra, structure function, generalized Jordan–Schwinger and Holstein–Primakoff transformations, deformed two-dimensional conformal field theory

Abstract

The unified multiparametric generalizations of the well-known two-parameter deformed oscillator and hybrid oscillator algebras are introduced. The basic versions of these deformations are obtained by imputing the new free parameters in the structure functions and by a generalization of defining relations of these algebras. The generalized Jordan–Schwinger and Holstein–Primakoff realizations of the U^aypq (su(2)) algebra by the creations and annihilations operators of the basic versions of these deformations are found. The (p, q; a, y, l)-deformation of the two-dimensional conformal field theory is considered. The pole structure of the (p, q; a, y, l)-deformed operator product expansion (OPE) of the holomorphic component of the energy-momentum tensor with primary fields is found. The two-point correlation function of the (p, q; a, y, l)-deformed two-dimensional conformal field theory is calculated.

References

L.C. Biedenharn, J. Phys. A 22, L 837 (1989).

J. Macfarlane, J. Phys. A 22, L 581 (1989).

M. Arik and D.D. Coon, J. Math. Phys. 17, 524 (1976).

https://doi.org/10.1063/1.522937

C. Daskaloyannis, J. Phys: Math. General. A 24, 789 (1991).

R. Chakrabarti and R. Jagannathan, J. Phys A 24, L 711 (1991).

S. Jing, IL Nuovo Cimento A 105, 1267 (1997).

https://doi.org/10.1007/BF02731001

M. Arik, E. Demircan, T. Turgut, L. Ekinci, and M. Mungan, Z. Phys. C 55, 89 (1992).

https://doi.org/10.1007/BF01558292

L.C. Kwek and C.H. Oh, Eur. J. Phys. C 5, 189 (1998).

M.A. Vasiliev, J. Mod. Phys. A 6, 1115 (1991).

https://doi.org/10.1142/S0217751X91000605

L. Brink, T.H. Hanson, and M.A. Vasiliev, Phys. Lett. B 109, 1115 (1992).

T. Brzezinski, I.L. Egusquiza, and A. Macfarlane, Phys. Lett. B 276, 109 (1992).

C. Quesne and N. Vanstineekiste, J. Theor. Phys. 39, 1175 (2000).

https://doi.org/10.1023/A:1003627217508

R. Chakrabarti and R. Jagannathan, J. Phys. A: Math. Gen. 25, 2325 (1992).

I.M. Burban, Phys. Lett. A 366, 308 (2007).

https://doi.org/10.1016/j.physleta.2007.02.051

J.B. Geloun and M.N. Hounkonnou, J. Phys. A: Math. Gen. 40, 817 (2007).

https://doi.org/10.1088/1751-8113/40/33/F01

I.M. Burban, Ukr. J. Phys. 57, 396 (2012).

W-Sn. Chung, K.S. Chung, S.T. Nam, and C.I. Um, Phys. Lett. A 183, 363 (1993).

https://doi.org/10.1016/0375-9601(93)90589-R

V.V. Borzov, E.V. Damaskinsky, and S.B. Yagorov, J. Phys. 22, 83 (1989).

I.M. Burban, Phys. Lett. A 377, 2863 (2013).

https://doi.org/10.1016/j.physleta.2013.08.044

H. Yan, J. Phys:. Math. Gen. 23, L 1150 (1990).

M. Chaichian, D. Ellinas, and P. Kulsh, Phys. Rev. Lett. 65, 980 (1990).

https://doi.org/10.1103/PhysRevLett.65.980

C.H. Oh and K. Singh, J. Phys. A 25, L 149 (1992).

D. Bernard and A. LeClair, Phys. Lett. B 227, 41 (1989).

https://doi.org/10.1016/0370-2693(89)91281-1

T. Matsuzaki, Suzuki, Phys. Lett. B 296, 33 (1992).

https://doi.org/10.1016/0370-2693(92)90800-J

W-Sn. Chung, IL Nuovo Cimento B 109, 599 (1994).

https://doi.org/10.1007/BF02728442

T.L. Curtright and C.K. Zachos, Phys. Lett. B 243, 237 (1990).

https://doi.org/10.1016/0370-2693(90)90845-W

C. Quesne and N. Vanstineekiste, Czech. J. Phys. B 47, 115 (1997).

https://doi.org/10.1023/A:1021408531528

A.N.F. Aleixo and A.B. Balatekin, J. Math. Phys. 50, 112103 (2009).

https://doi.org/10.1063/1.3256128

D. Bonatos and C. Dascaloyannis, Mod. Phys. Lett. B 366, 308 (1996).

S.S. Mizrahi, J.P. Camargo Lima, and V.V. Dodonov, J. Phys. A: Math. General 37, 3707 (2004).

https://doi.org/10.1088/0305-4470/37/11/012

G. Gasper and R. Rahma, Basic Hypergeometric Series (Cambridge Univ. Press, Cambridge, 1990).

Published
2018-10-11
How to Cite
Burban, I. (2018). Unified (p, q; a, y, l)-Deformations of Oscillator and Hybrid Oscillator Algebras and Two-Dimensional Conformal Field Theory. Ukrainian Journal of Physics, 58(11), 1113. https://doi.org/10.15407/ujpe58.11.1113
Section
Archive