On Behavior of Quantum Particles in an Electric Field in Spaces of Constant Curvature, Hyperbolic and Spherical Models

Authors

  • E. M. Ovsiyuk I.P. Shamyakin Mozyr State Pedagogical University
  • O. V. Veko I.P. Shamyakin Mozyr State Pedagogical University

DOI:

https://doi.org/10.15407/ujpe58.11.1065

Keywords:

Electric field, spaces of constant curvature, Schr¨odinger equation, Dirac equation, exact solutions

Abstract

In the Lobachevsky hyperbolic and Riemann spherical spaces, generalized potentials describing a uniform electric field are introduced as solutions of the covariant Maxwell equations. Exact solutions of the Schr¨odinger equation in the presence of the electric field are constructed in both models. The similarity of the energy spectra of the particle against the background of a spherical space with the electric field and in the Coulomb field is noted.

References

L.D. Landau and E.M. Lifshitz, Quantum Mechanics. Non-Relativistic Theory (Pergamon, New York, 1980).

I.I. Rabi, Zeit. f¨ur Phys. 49, 507 (1928).

L. Landau, Zeit. f¨ur Phys. 64, 629 (1930).

M.S. Plesset, Phys. Rev. 36, 1728 (1931).

https://doi.org/10.1103/PhysRev.36.1728

A. Comtet and P.J. Houston, J. Math. Phys. 26, 185 (1985).

https://doi.org/10.1063/1.526781

A. Comtet, Ann. of Phys. 173, 185 (1987).

https://doi.org/10.1016/0003-4916(87)90098-4

C. Groshe, Ann. Phys. 187, 110 (1988).

https://doi.org/10.1016/0003-4916(88)90283-7

J.R. Klauder and E. Onofri, Int. J. Mod. Phys. A 4, 3939 (1989).

https://doi.org/10.1142/S0217751X89001606

G.V. Dunne, Ann. Phys. 215, 233 (1992).

https://doi.org/10.1016/0003-4916(92)90112-Y

M. Alimohammadi and A. Shafei Deh Abad, J. Phys. A 29, 559 (1996).

https://doi.org/10.1088/0305-4470/29/3/010

E. Onofri, Int. J. Theor. Phys. 40, 537 (2001).

https://doi.org/10.1023/A:1004115827959

J. Gamboa, M. Loewe, F. Mendez, and J.C. Rojas, Mod. Phys. Lett. A 16, 2075 (2001).

https://doi.org/10.1142/S0217732301005345

A.A. Bogush, V.M. Red'kov, and G.G. Krylov, NPCS 11, 403 (2008).

Yu.A. Kurochkin, V.S. Otchik, E.M. Ovsiyuk, and Dz.V. Shoukavy, Yad. Fiz. 74, 969 (2011).

Yu.A. Kurochkin, V.S. Otchik, and E.M. Ovsiyuk, Yad. Fiz. 75, 1316 (2012).

V.V. Kudryashov, Yu.A. Kurochkin, E.M. Ovsiyuk, and V.M. Red'kov, SIGMA 6, 004 (2010).

E. Schr¨odinger, Proc. Roy. Irish. Soc. A 46, 9 (1940).

A.F. Stevenson, Phys. Rev. 59, 842 (1941).

https://doi.org/10.1103/PhysRev.59.842

L. Infeld and A. Schild, Phys. Rev. 67, 121 (1945).

https://doi.org/10.1103/PhysRev.67.121

P.W. Higgs, J. Phys. A 12, 309 (1979).

https://doi.org/10.1088/0305-4470/12/3/006

H.I. Leemon, J. Phys. A 12, 489 (1979).

https://doi.org/10.1088/0305-4470/12/4/009

Yu.A. Kurochkin and V.S. Otchik, Dokl. of the Nat. Acad. of Sci. of Belarus 23, 987 (1979).

A.A. Bogush, Yu.A. Kurochkin, and V.S. Otchik, Dokl. of the Nat. Acad. of Sci. of Belarus 24, 19 (1979).

Yu.A. Kurochkin, Dokl. of the Nat. Acad. of Sci. of Belarus 38, 36 (1994).

V. Gritzev and Yu. Kurochkin, Phys. Rev. B 64, 035308 (2001).

https://doi.org/10.1103/PhysRevB.64.035308

Downloads

Published

2018-10-11

How to Cite

Ovsiyuk, E. M., & Veko, O. V. (2018). On Behavior of Quantum Particles in an Electric Field in Spaces of Constant Curvature, Hyperbolic and Spherical Models. Ukrainian Journal of Physics, 58(11), 1065. https://doi.org/10.15407/ujpe58.11.1065

Issue

Section

Archive