New Version of Q-Deformed Supersymmetric Quantum Mechanics

Authors

  • A. M. Gavrilik Bogolyubov Institute for Theoretical Physics, Nat. Acad. of Sci. of Ukraine
  • I. I. Kachurik Bogolyubov Institute for Theoretical Physics, Nat. Acad. of Sci. of Ukraine
  • A. V. Lukash Bogolyubov Institute for Theoretical Physics, Nat. Acad. of Sci. of Ukraine

DOI:

https://doi.org/10.15407/ujpe58.11.1025

Keywords:

supersymmetric quantum mechanics, q-deformation, scaling operator, q-superoscillator, ground state, q-Gaussian

Abstract

A new version of the q-deformed supersymmetric quantum mechanics (q-SQM), which is inspired by the Tamm–Dankoff-type (TD-type) deformation of quantum harmonic oscillator, is constructed. The obtained algebra of q-SQM is similar to that in Spiridonov’s approach. However, within our version of q-SQM, the ground state found explicitly in the special case of superpotential yielding q-superoscillator turns out to be non-Gaussian and takes the form of special (TD-type) q-deformed Gaussian.

References

L.C. Biedenharn, J. Phys. A: Math. Gen. 22, L873, (1989).

https://doi.org/10.1088/0305-4470/22/18/004

A.J. Macfarlane, J. Phys. A: Math. Gen. 22, 4581, (1989).

https://doi.org/10.1088/0305-4470/22/21/020

V. Spiridonov, Mod. Phys. Lett. A 7, 1241, (1992); [hepth/9202013].

https://doi.org/10.1142/S0217732392003724

E. Witten, Nucl. Phys. B 188, 513 (1981).

https://doi.org/10.1016/0550-3213(81)90006-7

L.E. Gendenshtein and I.V. Krive, Sov. Phys. Usp. 28, 645 (1985).

https://doi.org/10.1070/PU1985v028n08ABEH003882

K. Odaka, T. Kishi, and S. Kamefuchi, J. Phys. A: Math. Gen. 24, L591 (1991).

https://doi.org/10.1088/0305-4470/24/11/004

S. Chaturvedi, V. Srinivasan, and R. Jagannathan, Mod. Phys. Lett. A 8, 3727 (1993).

https://doi.org/10.1142/S0217732393003457

A.M. Gavrilik and A.P. Rebesh, Mod. Phys. Lett. A 22, 949 (2007);

https://doi.org/10.1142/S0217732307022827

A.M. Gavrilik and A.P. Rebesh, Mod. Phys. Lett. A 22, 949 (2007); A.M. Gavrilik and A.P. Rebesh, Eur. Phys. J. A bf 47, 55 (2011), arXiv: 1007.5187 [quant-ph].

A.A. Andrianov and M.V. Ioffe, J. Phys. A: Math. Theor. 45, 503001 (2012).

https://doi.org/10.1088/1751-8113/45/50/503001

G. Gasper and M. Rahman, Basic Hypergeometric Series (Cambridge Univ. Press, Cambridge, 2004).

https://doi.org/10.1017/CBO9780511526251

R. Jagannathan and K. Srinivasa Rao, Two-parameter quantum algebras, twin-basic numbers, and associated generalized hypergeometric series, preprint arXiv: math/0602613.

A.M. Gavrilik and I.I. Kachurik, Mod. Phys. Lett. A 27, No. 21, 1250114 (2012).

https://doi.org/10.1142/S0217732312501143

Downloads

Published

2018-10-11

How to Cite

Gavrilik, A. M., Kachurik, I. I., & Lukash, A. V. (2018). New Version of Q-Deformed Supersymmetric Quantum Mechanics. Ukrainian Journal of Physics, 58(11), 1025. https://doi.org/10.15407/ujpe58.11.1025

Issue

Section

Archive