Simulation of a Spatial Organization of Point Defects in Irradiated Systems

  • D. O. Kharchenko Institute of Applied Physics, Nat. Acad. of Sci. of Ukraine
  • V. O. Kharchenko Institute of Applied Physics, Nat. Acad. of Sci. of Ukraine
  • A. I. Bashtova Institute of Applied Physics, Nat. Acad. of Sci. of Ukraine
Keywords: rate theory, spatial organization of point defects of the vacancy type, clusters, pores, irradiated systems, defect pattern formation, irradiation in reactors, numerical simulation

Abstract

In the framework of rate theory, a generalized statistical approach has been proposed to describe the spatial organization of point defects of the vacancy type into clusters and pores in irradiated systems. The approach makes allowance for the generation of point defects by elastic fields, as well as for defect interaction. The model is applied to study the defect pattern formation in pure nickel. The conditions required for the pattern formation at actual irradiation regimes in reactors have been analyzed. The peculiarities of microstructure changes at various temperatures and dose accumulation rates have been obtained both analytically and numerically. The defect pattern period and the change of a characteristic pattern size have been studied by applying the statistical methods to analyze the obtained numerical data. The results are in good correspondence with well-known experimental observations of the defect microstructure formation in irradiated materials under reactor conditions.

References

J.H. Evans, Nature 229, 403 (1971).

https://doi.org/10.1038/229403a0

S. Saass and B.L. Eyre, Phil. Mag. 27, 1447 (1973).

https://doi.org/10.1080/14786437308226898

P.B. Johnson, D.J. Mazey, and J.H. Evans, Radiat. Eff. 78, 147 (1983).

https://doi.org/10.1080/00337578308207367

J.E. Evans and D.J. Mazey, J. Nucl. Mater. 138, 176 (1986).

https://doi.org/10.1016/0022-3115(86)90004-8

A. Jostobns and K. Farrel, Radiat. Eff. 15, 217 (1972).

https://doi.org/10.1080/00337577208234696

J.O. Steigler and K. Farrel, Scr. Metal. 8, 651 (1974).

https://doi.org/10.1016/0036-9748(74)90015-5

V.V. Uglov, Radiation-Induced Effects in Solids (Belarusian State Univ., Minsk, 2007) (in Russian).

D. Walgraef, Spatio-Temporal Pattern Formation (Springer, New York, 1996).

F.Kh. Mirzoev, V.Ya. Panchenko, and L.A. Shelepin, Usp. Fiz. Nauk 166, 3 (1996).

https://doi.org/10.3367/UFNr.0166.199601a.0003

F.Kh. Mirzoev, and L.A. Shelepin, Pis'ma Zh. Tekhn. Fiz. 22, No. 13, 28 (1996).

V.N. Voevodin and I.M. Neklyudov, Structural-Phase State Evolution and Radiation Resistance of Structural Materials (Naukova Dumka, Kiev, 2006) (in Russian).

R.Enrique and P.Bellon, Phys. Rev. Lett. 84, 2885 (2000).

https://doi.org/10.1103/PhysRevLett.84.2885

R.A. Enrique and P. Bellon, Phys. Rev. E 63, 134111 (2001).

J. Ye and P. Bellon, Phys. Rev. B70, 094104 (2004).

https://doi.org/10.1103/PhysRevB.70.094104

N. Ofori-Opoku, J.J. Hoyt, and N. Provatas, Phys. Rev. E 86, 066706 (2012).

https://doi.org/10.1103/PhysRevE.86.066706

K.R. Elder and M. Grant, Phys. Rev. E 70, 051605 (2004).

https://doi.org/10.1103/PhysRevE.70.051605

P.F. Tupper and M. Grant, Eur. Phys. Lett. 81, 40007 (2008).

https://doi.org/10.1209/0295-5075/81/40007

J. Berry, M. Garnt, and K.R. Elder, Phys. Rev. E 73, 031609 (2006).

https://doi.org/10.1103/PhysRevE.73.031609

K.R. Elder, N. Provatas, J. Berry, P. Stefanovich, and M. Grant, Phys. Rev. B 75, 064107 (2007).

https://doi.org/10.1103/PhysRevB.75.064107

A. Jaatinen, C.V. Achim, K.R. Elder, and T. Ala-Nissila, Phys. Rev. E 80, 031602 (2009).

https://doi.org/10.1103/PhysRevE.80.031602

D. Kharchenko, I. Lysenko, and V. Kharchenko, Physica A 389, 3356 (2010).

https://doi.org/10.1016/j.physa.2010.04.027

D.O. Kharchenko, V.O. Kharchenko, and I.O. Lysenko, Cent. Eur. J. Phys. 9, 698 (2011).

D.O. Kharchenko, V.O. Kharchenko, S.V. Kokhan, and I.O. Lysenko, Ukr. J. Phys. 57, 1069 (2012).

D.O. Kharchenko, V.O. Kharchenko, I.O. Lysenko, and S.V. Kokhan, Phys. Rev. E 82, 061108 (2010).

https://doi.org/10.1103/PhysRevE.82.061108

V.O. Kharchenko and D.O. Kharchenko, Cond. Matter Phys. 14, 23602 (2011)

https://doi.org/10.5488/CMP.14.23602

D.O. Kharchenko, A.V Dvornychenko, and I.O. Lysenko, Ukr. J. Phys. 53, 917 (2008).

D.O. Kharchenko, I.O. Lysenko, and V.O. Kharchenko, Ukr. J. Phys. 55, 1226 (2010).

P.K. Galenko, D. Kharchenko, and I. Lysenko, Physica A 389, 3443 (2010).

https://doi.org/10.1016/j.physa.2010.05.002

G. Martin, Phys. Rev. B. 30, 1424 (1984).

https://doi.org/10.1103/PhysRevB.30.1424

C. Abromeit and G. Martin, J. Nucl. Mater. 271–272, 251 (1999).

https://doi.org/10.1016/S0022-3115(98)00712-0

V.O. Kharchenko and D.O. Kharchenko, Eur. Phys. J. B 85, 383 (2012).

https://doi.org/10.1140/epjb/e2012-30522-3

D. Batogkh, M. Hildebrant, F. Krischer, and A. Mikhailov, Phys. Rep. 288, 435 (1997).

https://doi.org/10.1016/S0370-1573(97)00036-7

D.O. Kharchenko, S.V. Kokhan, and A.V. Dvornichenko, Physica D 238, 2251 (2009).

https://doi.org/10.1016/j.physd.2008.12.005

S.E. Mangioni and H.S. Wio, Phys. Rev. E 71, 056203 (2005).

https://doi.org/10.1103/PhysRevE.71.056203

H. Risken, The Fokker-Planck Equation (Springer, Berlin, 1984).

M. Ibanes, J. Garcia-Ojalvo, R. Toral, and J.M. Sancho, Phys. Rev. Lett. 87, 020601 (2001).

https://doi.org/10.1103/PhysRevLett.87.020601

K. Wood, J. Buceta, and K. Lindenberg, Phys. Rev. E. 73, 022101 (2006).

https://doi.org/10.1103/PhysRevE.73.022101

D.O. Kharchenko and A.V. Dvornichenko, Physica A 387, 5342 (2008).

https://doi.org/10.1016/j.physa.2008.05.041

D.O. Kharchenko and A.V. Dvornichenko, Eur. Phys. J. B 61, 95 (2008).

https://doi.org/10.1140/epjb/e2008-00035-y

V.O. Kharchenko, Physica A 388, 268 (2009).

https://doi.org/10.1016/j.physa.2008.10.016

D.O. Kharchenko, I.O. Lysenko, and S.V. Kokhan, Eur. Phys. J. B. 76, 37 (2010).

https://doi.org/10.1140/epjb/e2010-00172-8

S.E. Mangioni, Physica A 389, 1799 (2010).

https://doi.org/10.1016/j.physa.2010.01.011

J. Buceta and K. Linderberg, Phys. Rev. E 69, 011102 (2004).

https://doi.org/10.1103/PhysRevE.69.011102

P.C. Hohenberg and B.I. Halperin, Rev. Mod. Phys. 49, 435 (1997).

https://doi.org/10.1103/RevModPhys.49.435

Published
2018-10-11
How to Cite
Kharchenko, D., Kharchenko, V., & Bashtova, A. (2018). Simulation of a Spatial Organization of Point Defects in Irradiated Systems. Ukrainian Journal of Physics, 58(10), 993. https://doi.org/10.15407/ujpe58.10.0993
Section
General problems of theoretical physics