Temperature Dependence of Raman Spectra of Silicon Nanocrystals in Oxide Matrix

Authors

  • A. S. Nikolenko V.E. Lashkaryov Institute of Semiconductor Physics, Nat. Acad. of Sci. of Ukraine

DOI:

https://doi.org/10.15407/ujpe58.10.0980

Keywords:

silicon nanocrystallites, phonons, Raman microspectroscopy, laser heating

Abstract

The temperature dependence of the Raman spectra of silicon nanocrystals (nc-Si) in a SiOx matrix has been studied. The temperature evolution of the phonon spectra is considered as a result of the combined influence of the phonon-confinement effect, anharmonic phonon coupling, thermal expansion, and thermoelastic strains. The gradual relaxation of thermoelastic tensile strains in nc-Si with increase in the temperature is demonstrated. The effect of the laser heating on the Raman spectrum is studied, and the linear dependence of a local temperature in nc-Si on the power density of the exciting laser radiation is determined. The differences between the temperature dependences of the Raman spectra obtained at the thermal and local laser heatings of the nc-Si specimens are analyzed.

References

R. Collins, P.M. Fauchet, and M.A. Tischler, Phys. Today 50, No. 1, 24 (1997).

https://doi.org/10.1063/1.881650

K.D. Hirschman, L. Tsybeskov, S.P. Duttagupta, and P.M. Fauchet, Nature 384, 338 (1996).

https://doi.org/10.1038/384338a0

Z. Huang, J.E. Carey, M. Liu, X. Guo, E. Mazur, and J.C. Campbell, Appl. Phys. Lett. 89, 033506 (2006).

https://doi.org/10.1063/1.2227629

S. Park, E. Cho, D. Song, G. Conibeer, and M.A. Green, Sol. Energy Mater. Sol. Cells 93, 684 (2009).

https://doi.org/10.1016/j.solmat.2008.09.032

M.N. Islam and S. Kumar, J. Appl. Phys. 93, 1753 (2003).

https://doi.org/10.1063/1.1535254

X.X. Wang, J.G. Zhang, L. Ding, B.W. Cheng, W.K. Ge, J.Z. Yu, and Q.M. Wang, Phys. Rev. B 72, 195313 (2005).

https://doi.org/10.1103/PhysRevB.72.195313

M.V. Wolkin, J. Jorne, P.M. Fauchet, G. Allan, and C. Delerue, Phys. Rev. Lett. 82, 197 (1999).

https://doi.org/10.1103/PhysRevLett.82.197

A.S. Nikolenko, M.V. Sopinskyy, V.V. Strelchuk, L.I. Veligura, and V.V. Gomonovych, J. Optoelectron. Adv. Mater. 14, 120 (2012).

S. Hernandez, A. Martinez, P. Pellegrino, Y. Lebour, B. Garrido, E. Jordana, and J.M. Fedeli, J. Appl. Phys. 104, 044304 (2008).

https://doi.org/10.1063/1.2968244

T. Arguirov, T. Mchedlidze, M. Kittler, R. Rolver, B. Berghoff, M. Forst, and B. Spangenberg, Appl. Phys. Lett. 89, 053111 (2006).

https://doi.org/10.1063/1.2260825

G. Viera, S. Huet, and L. Boufendi, J. Appl. Phys. 90, 4175 (2001).

https://doi.org/10.1063/1.1398601

H. Richter, Z.P. Wang, and L. Ley, Solid State Commun. 39, 625 (1981).

https://doi.org/10.1016/0038-1098(81)90337-9

I.H. Campbel and P.M. Fauchet, Solid State Commun. 58, 739 (1984).

https://doi.org/10.1016/0038-1098(86)90513-2

V. Poborchii, T. Tada, and T. Kanayama, J. Appl. Phys. 97, 104323 (2005).

https://doi.org/10.1063/1.1904157

G. Faraci, S. Gibilisco, and A.R. Pennisi, Phys. Lett. A 373, 3779 (2009).

https://doi.org/10.1016/j.physleta.2009.07.072

M.E. Straumanis and E.Z. Aka, J. Appl. Phys. 23, 330 (1952).

https://doi.org/10.1063/1.1702202

M. Salis, P.C.Ricci, and A.Anedda, J. Raman Spectrosc. 40, 64 (2009).

https://doi.org/10.1002/jrs.2076

G. Lucovsky and J.C. Phillips, J. Vac. Sci. Technol. B 22, 2087 (2004).

https://doi.org/10.1116/1.1771676

I. De Wolf, Semicond. Sci. Technol. 11, 139 (1996).

https://doi.org/10.1088/0268-1242/11/2/001

E. Anastassakis, A. Pinczuk, E. Burstein, F.H. Pollak, and M. Cardona, Solid State Commun. 8, 133 (1970).

https://doi.org/10.1016/0038-1098(70)90588-0

C. Postmus, J.R. Ferraro, and S.S. Mitra, Phys. Rev. 174, 983 (1968).

https://doi.org/10.1103/PhysRev.174.983

E.S. Zouboulis and M. Grimsditch, Phys. Rev. B 43, 12490 (1991).

https://doi.org/10.1103/PhysRevB.43.12490

M. Balkanski, R.F. Wallis, and E. Haro, Phys. Rev. B 28, 1928 (1983).

https://doi.org/10.1103/PhysRevB.28.1928

R. Hull, Properties of Crystalline Silicon (INSPEC, Institute of Electrical Engineers, London, 1999).

B.A. Weinstein and G.J. Piermarini, Phys. Rev. B 12, 1172 (1975).

https://doi.org/10.1103/PhysRevB.12.1172

W.J. Borer, S.S. Mitra, and K.V. Namjoshi, Sol. State Commun. 9, 1377 (1971).

https://doi.org/10.1016/0038-1098(71)90399-1

Y. Okada and Y. Tokumara, J. Appl. Phys. 56, 314 (1984).

https://doi.org/10.1063/1.333965

H. Tang and I.P. Herman, Phys. Rev. B 43, 2299 (1991).

https://doi.org/10.1103/PhysRevB.43.2299

T.R. Hart, R.L. Aggarwal, and B. Lax, Phys. Rev. B 1, 638 (1970).

https://doi.org/10.1103/PhysRevB.1.638

S.M. Sze, Physics of Semiconductor Devices (Wiley, New York, 1981).

A.K. Shukla, R. Kumar, and V. Kumar, J. Appl. Phys. 107, 014306 (2010).

https://doi.org/10.1063/1.3271586

R. Gupta, Q. Xiong, C.K. Adu, U.J. Kim, and P.C. Eklund, Nano Lett. 3, 627 (2003).

https://doi.org/10.1021/nl0341133

Published

2018-10-11

How to Cite

Nikolenko, A. S. (2018). Temperature Dependence of Raman Spectra of Silicon Nanocrystals in Oxide Matrix. Ukrainian Journal of Physics, 58(10), 980. https://doi.org/10.15407/ujpe58.10.0980

Issue

Section

Solid matter

Most read articles by the same author(s)