A New FWM Reduction Technique Based on Damping Selective Wavelengths

Authors

  • Haider J. Abed Department of Electrical Engineering, College of Engineering, University of Babylon
  • N. M. Din Centre for Communication Services Convergence Technologies, College of Engineering, Universiti Tenaga Nasional
  • M. H. Al-Mansoori Faculty of Engineering, Sohar University
  • F. Abdullah Centre for Communication Services Convergence Technologies, College of Engineering, Universiti Tenaga Nasional
  • Noora Salim Centre for Communication Services Convergence Technologies, College of Engineering, Universiti Tenaga Nasional
  • Hilal A. Fadhil School of Computer & Communication Engineering, University Malaysia Perlis

DOI:

https://doi.org/10.15407/ujpe58.10.0956

Keywords:

four wave mixing, ODM, nonlinear effect, WDM, BER, FWM suppression methods

Abstract

This paper proposes a new method that can suppress the four-wave mixing using an Optical Drop Multiplexing (ODM) technique. The four-wave mixing (FWM) behavior and the performance of wavelength division multiplexing (WDM) systems are investigated, using the proposed technique. It is found that the FWM power is drastically reduced to –96 dBm, when the ODM technique was used. For a WDM system at the first channel (193 THz), the suggested approach offered the bit error rate (BER) to be 1.47*10^-27, in comparison with the absence of the current technique, where BER was 2.53*10^-17. Moreover, it is found that the proposed technique caused the FWM power to reduce by 28 dB.

References

G.P. Agrawal, Fiber-Optic Communication Systems (Wiley, New York, 2002).

T.S. Chin, F. Abbou, and E.H. Tat, Amer. J. of Appl. Sci. 5, 1059 (2008).

https://doi.org/10.3844/ajassp.2008.1059.1063

S. Gao and G. Jin, Appl. Optics 42, 7126 (2003).

https://doi.org/10.1364/AO.42.007126

Y. Huang, X. Dong, J. Li, and X. Dong, Microwave and Optical Techn. Lett. 45, 156 (2005).

https://doi.org/10.1002/mop.20755

R. Kaler and R. Kaler, Optik-Int. J. for Light and Electron Optics 123, 352 (2012).

https://doi.org/10.1016/j.ijleo.2011.01.017

G. Kaur, M. Singh, and M. Patterh, Optik-Int. J. for Light and Electron Optics 121, 889 (2010).

https://doi.org/10.1016/j.ijleo.2008.09.035

T. Sabapathi and S. Sundaravadivelu, Optik-Int. J. for Light and Electron Optics 122, 1453 (2011).

https://doi.org/10.1016/j.ijleo.2010.08.023

Y. Shao, N. Chi, C. Hou, W. Fang, J. Zhang, B. Huang, X. Li, S. Zou, Z. Liu, X. Zheng, et al., J. of Lightwave Techn. 28, 1770 (2010).

https://doi.org/10.1109/JLT.2010.2048413

T. Shimizu, K. Nakajima, K. Shiraki, K. Ieda, and I. Sanakawa, Optical Fiber Techn.14, 10 (2008).

https://doi.org/10.1016/j.yofte.2007.04.004

A. Singh, A.K. Sharma, and T. Kamal, Optik-Int. J. for Light and Electron Optics 119(16), 788 (2008).

https://doi.org/10.1016/j.ijleo.2007.03.009

C. Wehmann, L. Fernandes, C. Sobrinho, J. Lima, M. Da Silva, E. De Almeida, J. Medeiros Neto, and A. Sombra, Opt. Fiber Techn. 11, 306 (2005).

https://doi.org/10.1016/j.yofte.2005.01.003

J. Yu, Y. Kim, M. Lee, and J. Park, Microwave and Optical Techn. Lett. 29, 37 (2001).

https://doi.org/10.1002/mop.1075

Downloads

Published

2018-10-11

How to Cite

Abed, H. J., Din, N. M., Al-Mansoori, M. H., Abdullah, F., Salim, N., & Fadhil, H. A. (2018). A New FWM Reduction Technique Based on Damping Selective Wavelengths. Ukrainian Journal of Physics, 58(10), 956. https://doi.org/10.15407/ujpe58.10.0956

Issue

Section

Optics, lasers, and quantum electronics

Most read articles by the same author(s)