Scaling Nature of Target Fragments in the 28Si-Emulsion Interaction at an Energy of 14.6A GeV

Authors

  • M. Ayaz Ahmad Physics Department, Faculty of Science, Tabuk University
  • Mir Hashim Rasool Physics Department, Aligarh Muslim University
  • Shafiq Ahmad Physics Department, Aligarh Muslim University

DOI:

https://doi.org/10.15407/ujpe58.10.0944

Keywords:

scaled factorial moments, multifractal moments, quark-gluon plasma, hadrons

Abstract

An attempt has been made to study the fractal behavior of the experimental data on nuclear fragments obtained from 28Si-Emulsion collisions at 14.6A GeV. The whole analysis is performed by using two different methods, namely the methods of scaled factorial moments (SFMs), Fq; and multifractal moments, Gq: We have found that the present data reflect a multifractal geometry for nuclear fragments along with the Monte Carlo events (simulated events). Finally, some evidences of non-thermal phase transitions and the scaling law nature of SFMs have been studied.

References

A. Bialas and R. Peschanski, Nucl. Phys. B 273, 703 (1986);

https://doi.org/10.1016/0550-3213(86)90386-X

Nucl. Phys. B 308, 857 (1988).

https://doi.org/10.1016/0550-3213(88)90131-9

R.C. Hwa and J.C. Pan, Phys. Rev. D 45, 1476 (1992);

https://doi.org/10.1103/PhysRevD.45.1476

R.C. Hwa, Phys. Rev. D 41, 1456 (1990).

https://doi.org/10.1103/PhysRevD.41.1456

E.V. Shuryak, Phys. Rep. 115, 151 (1984);

https://doi.org/10.1016/0370-1573(84)90037-1

E.V. Shuryak, Nucl. Phys. A 400, 541 (1983).

https://doi.org/10.1016/0375-9474(83)90453-0

E. Karsch, Z. Phys. C 38, 147 (1988).

https://doi.org/10.1007/BF01574529

BRAHMS Collaboration. D. Rohrich et al., J. Phys. G 31, S659 (2005).

https://doi.org/10.1088/0954-3899/31/6/005

M. Gyulossy, Berkeley Preprint LBC-16831, 1989 (unpublished).

NA22 Collaboration. I.V. Ajinenko et al., Phys. Lett. B 235, 373 (1990).

https://doi.org/10.1016/0370-2693(90)91981-G

TASSO Collaboration. W. Braunscheweig et al., Phys. Lett. B 231, 548 (1989).

https://doi.org/10.1016/0370-2693(89)90707-7

I. Derado, G. Jancso, N. Schmitz, and P. Stopa, Z. Phys. C 54, 357 (1992).

https://doi.org/10.1007/BF01559452

B. Buschbeck, R. Lipa, and R. Peschanski, Phys. Lett. B 215, 788 (1988).

https://doi.org/10.1016/0370-2693(88)90062-7

B. Buschbeck, R. Lipa, and R. Peschanski, Phys. Lett. B 215, 788 (1988);

https://doi.org/10.1016/0370-2693(88)90062-7

W. Shaoshun, Z. Jie, Y. Yunxiu, X. Chingua and Z. Yu, Phys. Rev. D 49, 5787 (1994);

https://doi.org/10.1103/PhysRevD.49.5785

UA1 Collaboration. C. Albajar et al., Nucl. Phys. B 345, 1 (1990).

https://doi.org/10.1016/0550-3213(90)90606-E

NA22 Collaboration. I.V. Ajinenko et al., Phys. Lett. B 222, 306 (1989).

https://doi.org/10.1016/0370-2693(89)91271-9

A. Capella, K. Fialkowski, and A. Krzywicki, Phys. Lett. B 230, 149 (1989);

https://doi.org/10.1016/0370-2693(89)91669-9

P. Carruthers and I. Sarcevie, Phys. Rev. Lett. 63, 1562 (1999);

https://doi.org/10.1103/PhysRevLett.63.1562

R.K. Shivpuri and V.K. Verma, Phys. Rev. D 47, 123 (1993).

https://doi.org/10.1103/PhysRevD.47.123

P. Carruthers, H.C. Eggers, and I. Sarcevie, Phys. Lett. B 254, 258 (1991);

https://doi.org/10.1016/0370-2693(91)90431-O

P. Carruthers, Int. J. Mod Phys. A 4, 5587 (1989).

https://doi.org/10.1142/S0217751X89002405

M. Ayaz Ahmad and Shafiq Ahmad, Int. J. of Theor. and Appl. Phys. 2, 199 (2012).

M. Ayaz Ahmad and Shafiq Ahmad, J. Phys. G: Nucl. Part. Phys. 32, 1279 (2006).

https://doi.org/10.1088/0954-3899/32/9/006

M. Ayaz Ahmad and Shafiq Ahmad, Ukr. J. Phys. 2, 1205 (2012).

B. Mandelbroat, J. Fluid Mech. 62, 331 (1972).

https://doi.org/10.1017/S0022112074000711

U. Frisch, P. Sulem, and M. Melkin, J. Fluid Mech. 87, 719 (1978).

https://doi.org/10.1017/S0022112078001846

Phys. Lett. B 227, 465 (1988).

B. Buschbeck, R. Lipa, and R. Peschanski, Phys. Lett. B 215, 788 (1988);

https://doi.org/10.1016/0370-2693(88)90062-7

W. Brauscheweig et al., Phys. Lett. B 231, 548 (1988).

https://doi.org/10.1016/0370-2693(89)90707-7

A. Bialas and R. Peschanski, Jagellian University report JPJU/4/88.

K. Fialkowski and J. Woseik, Phys. Lett. B 214, 617 (1988);

https://doi.org/10.1016/0370-2693(88)90131-1

Phys. Lett. B 232, 76 (1989).

M. Dremin, Mod. Phys. Lett. A 3, 1333 (1988).

https://doi.org/10.1142/S0217732388001604

R.C. Hwa and C.B. Chiu, Phys. Rev. D 43, 100 (1991).

https://doi.org/10.1103/PhysRevD.43.100

W. Florkowski and R.C. Hwa, Phys. Rev. D 43, 1548 (1991).

https://doi.org/10.1103/PhysRevD.43.1548

Li Jun-Sheng, Liu Fu-Hu, and Zhang Dong-Hai, Chin. Phys. Lett. V 24, 2789 (2007).

https://doi.org/10.1088/0256-307X/24/10/021

Dipak Ghosh et al., Nucl. Phys. A 720, 419 (2003).

https://doi.org/10.1016/S0375-9474(03)01079-0

B. Bhattacharjee, Nucl. Phys. A 748 641 (2005).

https://doi.org/10.1016/j.nuclphysa.2004.11.002

B. Bhattacharjee and S. Sen Gupta, Int. I. Mod. Phys. E 14, 1223 (2005).

https://doi.org/10.1142/S0218301305003879

A. Bialas and K. Zalewski, Phys. Lett. B 238, 413 (1990);

https://doi.org/10.1016/0370-2693(90)91757-3

A. Bialas and K. Zalewski, Nucl. Phys. B 237, 65 (1989).

B. Buschbeck, R. Lipa, and R. Peschanski, Phys. Lett. B 227, 465 (1988).

A. Bialas and R.C. Hwa, Phys. Lett. B 253, 436 (1991).

https://doi.org/10.1016/0370-2693(91)91747-J

C. Meneveau and K.R. Sreenivasan, Phys. Lett. 59, 1474 (1987);

R. Hasan et al., Fractals 25, 1029 (2005);

https://doi.org/10.1016/j.chaos.2004.11.074

D. Ghosh et al., Fractals 11, 331 (2003);

https://doi.org/10.1142/S0218348X03002221

Nucl. Phys. A 707, 213 (2002).

https://doi.org/10.1016/S0375-9474(02)00754-6

A. Bershadskii, Phys. Rev. C 59, 364 (1999).

https://doi.org/10.1103/PhysRevC.59.364

E. Stanely and P. Meakin, Nature 335, 405 (1988).

https://doi.org/10.1038/335405a0

L.D. Landau and E.M. Lifshitz, Phys. Z. Sowjet 6, 244 (1934).

D. Ghosh et al., Fractals 11, 331 (2003);

https://doi.org/10.1142/S0218348X03002221

D. Ghosh et al., Z. Phys. C 71, 243 (1996).

E.A. De Wolf, I. Dremin, and W. Kittel, Phys. Rep. 270, 1 (1996).

https://doi.org/10.1016/0370-1573(95)00069-0

D. Seibert, Phys. Rev. D 41, 3381 (1990).

https://doi.org/10.1103/PhysRevD.41.3381

M. Ayaz Ahmad et al., Indian J. of Phys. 84, 12, 1675 (2010), DOI: 10.1007/s12648-010-0156-2.

https://doi.org/10.1007/s12648-010-0156-2

Downloads

Published

2018-10-11

How to Cite

Ahmad, M. A., Rasool, M. H., & Ahmad, S. (2018). Scaling Nature of Target Fragments in the 28Si-Emulsion Interaction at an Energy of 14.6A GeV. Ukrainian Journal of Physics, 58(10), 944. https://doi.org/10.15407/ujpe58.10.0944

Issue

Section

Nuclei and nuclear reactions