Einstein Equations in the Case of Static Cylindrical Symmetry and the Diagonal Stress-Energy Tensor with Mutually Proportional Components

Authors

  • S. B. Grigoryev Dnipropetrovsk National University
  • A. B. Leonov Dnipropetrovsk National University

DOI:

https://doi.org/10.15407/ujpe58.09.0894

Keywords:

Einstein equations, cylindrical symmetry, stress-energy tensor

Abstract

The Einstein equations with the stress-energy tensor in the form of a diagonal matrix with mutually proportional components are studied in the static cylindrically symmetric case. Several known exact solutions fall into this case (static electric field, some perfect fluid solutions, and solution with the cosmological constant). Coefficients of proportionality in the stress-energy tensor serve as parameters that allow studying a more general case (as well as obtaining new solutions for particular values of these coefficients). The initial system of equations is simplified and transformed into a system of two first-order ordinary differential equations. An exact solution is found for a broad set of parameters. The equilibrium points of the system of equations are considered, and the qualitative behavior of the solutions near the hyperbolic equilibrium points is studied.

References

<ol>

<li> H. Stephani et al., Exact Solutions of Einstein's Field Equations (CUP, Cambridge, 2003).
&nbsp;<a href="https://doi.org/10.1017/CBO9780511535185">https://doi.org/10.1017/CBO9780511535185</a>
</li>
<li> D.M. Chitre, R. Giiven, and Y. Nutku, J. Math. Phys. 16, 475 (1975).
&nbsp;<a href="https://doi.org/10.1063/1.522569">https://doi.org/10.1063/1.522569</a>
</li>
<li> N. Van den Bergh and P. Wils, J. Phys. A 16, 3843 (1983).
&nbsp;<a href="https://doi.org/10.1088/0305-4470/16/16/022">https://doi.org/10.1088/0305-4470/16/16/022</a>
</li>
<li> M.A.H. MacCallum, J. Phys. A 16, 3853 (1983).
&nbsp;<a href="https://doi.org/10.1088/0305-4470/16/16/023">https://doi.org/10.1088/0305-4470/16/16/023</a>
</li>
<li> A.K. Raychaudhuri, Ann. Phys. (USA) 11, 501 (1960).
&nbsp;<a href="https://doi.org/10.1016/0003-4916(60)90009-9">https://doi.org/10.1016/0003-4916(60)90009-9</a>
</li>
<li> H. Stephani et al., Exact Solutions of Einstein's Field Equations (CUP, Cambridge, 2003), p. 345 (formula 22.14).
</li>
<li> A.B. Evans, J. Phys. A 10, 1303 (1977).
&nbsp;<a href="https://doi.org/10.1088/0305-4470/10/8/009">https://doi.org/10.1088/0305-4470/10/8/009</a>
</li>
<li> T.G. Philbin, Class. Quantum Grav. 13, 1217 (1996).
&nbsp;<a href="https://doi.org/10.1088/0264-9381/13/5/032">https://doi.org/10.1088/0264-9381/13/5/032</a>
</li>
<li> S. Haggag and F. Desokey, Class. Quantum Grav. 13, 3221 (1996).
&nbsp;<a href="https://doi.org/10.1088/0264-9381/13/12/012">https://doi.org/10.1088/0264-9381/13/12/012</a>
</li>
<li> S. Haggag, Gen. Relativ. Gravit. 31, 1169 (1999).
&nbsp;<a href="https://doi.org/10.1023/A:1026756203992">https://doi.org/10.1023/A:1026756203992</a>
</li>
<li> W. Davidson, Gen. Relativ. Gravit. 22, (1990).
</li>
<li> A. Krasinski, Rep. Math. Phys. 14, (1978).
</li>
<li> K.A. Bronnikov, J. Phys. A 12, 201 (1979).
&nbsp;<a href="https://doi.org/10.1088/0305-4470/12/2/007">https://doi.org/10.1088/0305-4470/12/2/007</a>
</li>
<li> A. Krasinski, Acta Phys. Polon. B 6, 223 (1975).
</li>
<li> M.P. Korkina, S.B. Grigoryev, Ukr. Fiz. Zh. 29, 1153 (1984).
</li>
<li> L. Herrera, G. Le Denmat, G. Marcilhacy, and N.O. Santos, Int. J. Mod. Phys. D 14, 657 (2005).
&nbsp;<a href="https://doi.org/10.1142/S0218271805006626">https://doi.org/10.1142/S0218271805006626</a>
</li>
<li> F.C. Mena, R. Tavakol, and R. Vera, Generalisations of the Einstein-Strauss model to cylindrically symmetric settings, arXiv:gr-qc/0405043v1.
</li>
<li> P. Tod and F.C. Mena, Phys. Rev. D 70, 104028 (2004).
&nbsp;<a href="https://doi.org/10.1103/PhysRevD.70.104028">https://doi.org/10.1103/PhysRevD.70.104028</a>
</li>
<li> J.M.M. Senovilla and Raul Vera, Class. Quant. Grav. 17, 2843 (2000).
&nbsp;<a href="https://doi.org/10.1088/0264-9381/17/14/314">https://doi.org/10.1088/0264-9381/17/14/314</a>
</li>
<li> Masafumi Seriu, Phys. Rev. D 69, 124030 (2004).
&nbsp;<a href="https://doi.org/10.1103/PhysRevD.69.124030">https://doi.org/10.1103/PhysRevD.69.124030</a>
</li>
<li> C. Chicone and B. Mashhoon, Phys. Rev. D 83, 064013 (2011).
&nbsp;<a href="https://doi.org/10.1103/PhysRevD.83.064013">https://doi.org/10.1103/PhysRevD.83.064013</a>
</li>
<li> A. Ashtekar and M. Varadarajan, Phys. Rev. D 50, 4944 (1994).
&nbsp;<a href="https://doi.org/10.1103/PhysRevD.50.4944">https://doi.org/10.1103/PhysRevD.50.4944</a>
</li>
<li>. S.B. Grigoryev, Proc. Int. Conf. on Gen. Relativ. Gravit. (GR-13) (1992).
</li>
<li> S.B. Grigoryev, Kinem. Fiz. Nebes. Tel 10, 25 (1994).
</li>
<li> N.N. Bautin and E.A. Leontovich, Methods and Procedures of the Qualitative Study of Dynamical Systems on a Plane (Nauka, Moscow, 1990) (in Russian).
</li>
<li> S.L. Parnovs'kyi and O.Z. Gaidamaka, J. of Phys. Stud. 8, No. 4, 308 (2004).
</li>
<li> Shawn J. Kolitch, Qualitative Analysis of Brans-Dicke Universes with a Cosmological Constant, e-print arXiv:grqc/9409002v2 (1995).
</li>
<li> H. Stephani et al., Exact Solutions of Einstein's Field Equations (CUP, Cambridge, 2003), p. 342 (formula 22.4a).
</li>
<li> H. Stephani et al., Exact Solutions of Einstein's Field Equations (CUP, Cambridge, 2003), p. 344 (formula 22.11).
</li>
<li> M.W. Hirsch and S. Smale, Differential Equations, Dynamical Systems and Linear Algebra (Academic Press, San Diego, 1974).
</li>
<li> H. Stephani et al., Exact Solutions of Einstein's Field Equations (CUP, Cambridge, 2003), p. 63.
&nbsp;<a href="https://doi.org/10.1017/CBO9780511535185">https://doi.org/10.1017/CBO9780511535185</a>
</li>

</ol>

Downloads

Published

2018-10-11

How to Cite

Grigoryev, S. B., & Leonov, A. B. (2018). Einstein Equations in the Case of Static Cylindrical Symmetry and the Diagonal Stress-Energy Tensor with Mutually Proportional Components. Ukrainian Journal of Physics, 58(9), 894. https://doi.org/10.15407/ujpe58.09.0894

Issue

Section

Astrophysics and cosmology