Magnetic Properties of Quantum Rings in the Presence of Spin-Orbit and Electron-Electron Interactions

Authors

  • O. S. Bauzha Taras Shevchenko National University of Kyiv

DOI:

https://doi.org/10.15407/ujpe58.09.0888

Keywords:

Kohn–Sham, qubit, Hartree–Fock, Broyden, Rashba, quantum dots, spin-orbit splitting

Abstract

The separate and combined influences of the spin-orbit and electron-electron interactions on the electron magnetization in quantum rings have been studied theoretically on the basis of the spin-density-functional theory and the Kohn–Sham equation used for the calculation of electron states in two-dimensional parabolic quantum rings containing from two to six electrons. The magnetization of electrons in a quantum ring is calculated at zero temperature. The revealed
abrupt changes in the ring magnetization are associated with the crossing of electron states that occurs if the spin-orbit and/or electron-electron interactions are taken into consideration.

References

<ol>

<li> S.A. Wolf, D. Awschalom, R.A. Buhrman, J.M. Daughton, S. von Molnar, M.L. Roukes, A.Y. Chtchelkanova, and D.M. Treger, Science 294, 1488 (2001).
&nbsp;<a href="https://doi.org/10.1126/science.1065389">https://doi.org/10.1126/science.1065389</a>
</li>
<li> V.A. Nikolyuk and I.V. Ignatiev, Fiz. Tekh. Poluprovodn. 41, 1443 (2007).
</li>
<li> R. Hanson, L.P. Kouwenhoven, J.R. Petta, S. Tarucha, and L.M.K. Vandersypen, Rev. Mod. Phys. 79, 1217 (2007).
&nbsp;<a href="https://doi.org/10.1103/RevModPhys.79.1217">https://doi.org/10.1103/RevModPhys.79.1217</a>
</li>
<li> O. Voskoboynikov, O. Bauga, C.P. Lee, and O. Tretyak, J. Appl. Phys. 94, 5891 (2003).
&nbsp;<a href="https://doi.org/10.1063/1.1614426">https://doi.org/10.1063/1.1614426</a>
</li>
<li> O.S. Bauzha, O.M. Voskoboynikov, and O.V. Tretyak, Visn. Kyiv. Univ. Ser. Fiz. Mat. Nauky 2, 347 (2005).
</li>
<li> O.S. Bauzha, O.M. Voskoboynikov, O.V. Tretyak, and O.S. Sinyavskij, Ukr. Fiz. Zh. 51, 902 (2006).
</li>
<li> Yu.A. Bychkov and E.I. Rashba, J. Phys. C 17, 6039 (1984).
</li>
<li> E. de Andrada, E.A. Silva, G.C. La Rocca, and F. Bassani, Phys. Rev. B 55, 16293 (1997).
&nbsp;<a href="https://doi.org/10.1103/PhysRevB.55.16293">https://doi.org/10.1103/PhysRevB.55.16293</a>
</li>
<li> W. Kohn and L.J. Sham, Phys. Pev. 140, 1133 (1965).
</li>
<li> B. Tanatar and D.M. Ceperley, Phys. Rev. B 39, 5005 (1989).
&nbsp;<a href="https://doi.org/10.1103/PhysRevB.39.5005">https://doi.org/10.1103/PhysRevB.39.5005</a>
</li>
<li> T.F. Jiang, X.-M. Tong, and S.-I. Chu, Phys. Rev. B 63, 045317 (2001).
&nbsp;<a href="https://doi.org/10.1103/PhysRevB.63.045317">https://doi.org/10.1103/PhysRevB.63.045317</a>
</li>
<li> S. Nagaraja, J.-P. Leburton, and R.M. Martin, Phys. Rev. B 60, 8759 (1999).
&nbsp;<a href="https://doi.org/10.1103/PhysRevB.60.8759">https://doi.org/10.1103/PhysRevB.60.8759</a>
</li>
<li> Ph. Matagne, and J.-P. Leburton, Phys.Rev. B 65, 155311 (2002).
&nbsp;<a href="https://doi.org/10.1103/PhysRevB.65.155311">https://doi.org/10.1103/PhysRevB.65.155311</a>
</li>
<li> F. Pederiva, C.J. Umrigar, and E. Lipparini, Phys. Rev. B 62, 8120 (2000).
&nbsp;<a href="https://doi.org/10.1103/PhysRevB.62.8120">https://doi.org/10.1103/PhysRevB.62.8120</a>
</li>
<li> W.-C. Tan and J.C. Inkson, Semicond. Sci. Technol. 11, 1635 (1996).
&nbsp;<a href="https://doi.org/10.1088/0268-1242/11/11/001">https://doi.org/10.1088/0268-1242/11/11/001</a>
</li>
<li> W.-C. Tan and J.C. Inkson, Phys. Rev. B 60, 5626 (1999).
&nbsp;<a href="https://doi.org/10.1103/PhysRevB.60.5626">https://doi.org/10.1103/PhysRevB.60.5626</a>
</li>
<li> O. Voskoboynikov, C.P. Lee, and O. Tretyak, Phys. Rev. B 63, 165306 (2001).
&nbsp;<a href="https://doi.org/10.1103/PhysRevB.63.165306">https://doi.org/10.1103/PhysRevB.63.165306</a>
</li>
<li> G. Bastard, Wave Mechanics Applied to Semiconductor Heterostructures (EDP Science, Paris, 1996).
</li>
<li> L.M. Roth, B. Lax, and S. Zwerdling, Phys. Rev. 114, 90 (1959).
&nbsp;<a href="https://doi.org/10.1103/PhysRev.114.90">https://doi.org/10.1103/PhysRev.114.90</a>
</li>
<li> A.V. Moroz and C.H.W. Barnes, Phys. Rev. B 61, R2464 (2000).
&nbsp;<a href="https://doi.org/10.1103/PhysRevB.61.R2464">https://doi.org/10.1103/PhysRevB.61.R2464</a>
</li>
<li> L.I. Magarill, D.A. Romanov, and A.V. Chaplik, Zh. Eksp. ` Teor. Fiz. 86, 771 (1998).
</li>
<li> L.I. Magarill and A.V. Chaplik, Zh. Eksp. Teor. Fiz. ` 88, 815 (1999).
</li>
<li> D. Singh, H. Krakauer, and C.S. Wang, Phys. Rev. B 34, 8391 (1986).
&nbsp;<a href="https://doi.org/10.1103/PhysRevB.34.8391">https://doi.org/10.1103/PhysRevB.34.8391</a>
</li>
<li> M.A. Cusack, P.R. Briddon, and M. Jaros, Phys. Rev. B 54, 2300 (1996).
&nbsp;<a href="https://doi.org/10.1103/PhysRevB.54.R2300">https://doi.org/10.1103/PhysRevB.54.R2300</a>
</li>
<li> B.C. Lee, O. Voskoboynikov, and C.P. Lee, Physica E 24, 87 (2004).
&nbsp;<a href="https://doi.org/10.1016/j.physe.2004.04.030">https://doi.org/10.1016/j.physe.2004.04.030</a>
</li>

</ol>

Published

2018-10-11

How to Cite

Bauzha, O. S. (2018). Magnetic Properties of Quantum Rings in the Presence of Spin-Orbit and Electron-Electron Interactions. Ukrainian Journal of Physics, 58(9), 888. https://doi.org/10.15407/ujpe58.09.0888

Issue

Section

Nanosystems