Role of Mechanical Stresses at Ion Implantation of CdHgTe Solid Solutions

Authors

  • A. B. Smirnov V.E. Lashkaryov Institute of Semiconductor Physics, Nat. Acad. of Sci. of Ukraine
  • O. S. Lytvyn V.E. Lashkaryov Institute of Semiconductor Physics, Nat. Acad. of Sci. of Ukraine
  • V. A. Morozhenko V.E. Lashkaryov Institute of Semiconductor Physics, Nat. Acad. of Sci. of Ukraine
  • R. K. Savkina V.E. Lashkaryov Institute of Semiconductor Physics, Nat. Acad. of Sci. of Ukraine
  • M. I. Smoliy V.E. Lashkaryov Institute of Semiconductor Physics, Nat. Acad. of Sci. of Ukraine
  • R. S. Udovytska V.E. Lashkaryov Institute of Semiconductor Physics, Nat. Acad. of Sci. of Ukraine
  • F. F. Sizov V.E. Lashkaryov Institute of Semiconductor Physics, Nat. Acad. of Sci. of Ukraine

DOI:

https://doi.org/10.15407/ujpe58.09.0872

Keywords:

ion implantation, nano-structurization, semiconductor structure

Abstract

The properties of n-CdxHg1 xTe/CdZnTe (x = 0.223) structures implanted with B+ and Ag+ ions with an energy of 100 keV to a dose of 3 x 10^13 cm^-2 are studied. The software package TRIM_2008 was applied to simulate the ion implantation process. The surface morphology of heterostructures and their optical, mechanical and electrical properties are studied. It is found that the ion irradiation of specimens gives rise to the formation of a characteristic relief on their surface, as well as a layer in the near-surface region, where the optical parameters differ from those in the matrix. The implantation of CdxHg1 xTe epitaxial layers with boron and silver ions with the same energy and to the same dose brings about the formation of a damaged layer, substantially non-uniform by the thickness and the damage character, with maximum mechanical stresses that differ by two orders of magnitude. The values of the crystal lattice contraction coefficient b and the mechanical stresses omax in the region of radiation-induced disordering in the solid solution are determined. The influence of mechanical stresses in the doped layer on the defect redistribution and the formation of properties of Cd0:223Hg0:777Te after the implantation is discussed.

References

<ol>

<li> D. Paul, Semicond. Sci. Technol. 19, 75 (2004).
&nbsp;<a href="https://doi.org/10.1088/0268-1242/19/10/R02">https://doi.org/10.1088/0268-1242/19/10/R02</a>
</li>
<li> A.A. Orouji and M.J. Kumar, Superlatt. Microstruct. 39, 395 (2006).
&nbsp;<a href="https://doi.org/10.1016/j.spmi.2005.08.020">https://doi.org/10.1016/j.spmi.2005.08.02</a>
</li>
<li> A.D. Bondarev, D.A. Vinokurov, V.A. Kapitonov et al., Pis'ma Zh. Tekhn. Fiz. 24, 46 (1998).
</li>
<li> M.S. Kagan, I.V. Altukhov, E.G. Chirkova, V.P. Sinis, R.T. Troeger, S.K. Ray, and J. Kolodzey, Phys. Status Solidi B 235, 135 (2003).
&nbsp;<a href="https://doi.org/10.1002/pssb.200301536">https://doi.org/10.1002/pssb.200301536</a>
</li>
<li> V.Ya. Prinz, Physica E 24, 54 (2004).
&nbsp;<a href="https://doi.org/10.1016/j.physe.2004.04.024">https://doi.org/10.1016/j.physe.2004.04.024</a>
</li>
<li> W.B. Li, E.X. Zhang, M. Chen, N. Li, G.Q. Zhang, and Z.L. Liu, Semicond. Sci. Technol. 19, 571 (2004).
&nbsp;<a href="https://doi.org/10.1088/0268-1242/19/5/003">https://doi.org/10.1088/0268-1242/19/5/003</a>
</li>
<li> A.B. Smirnov, Semicond. Phys. Quant. Electr. Optoelectr. 15, 170 (2012).
&nbsp;<a href="https://doi.org/10.15407/spqeo15.02.170">https://doi.org/10.15407/spqeo15.02.170</a>
</li>
<li> T. Kryshtab, R. Savkina, F. Sizov, A. Smirnov, M. Kladkevich, and V. Samoylov, Phys. Status Solidi C 9, 1793 (2012).
&nbsp;<a href="https://doi.org/10.1002/pssc.201100608">https://doi.org/10.1002/pssc.201100608</a>
</li>
<li> F.F. Sizov, Photoelectronics for Vision Systems in Invisible Spectral Intervals (Akademperiodika, Kyiv, 2008) (in Russian).
</li>
<li> A.B. Smirnov, R.K. Savkina, R.S. Udovitskaya, A.Z. Evmenova, and F.F. Sizov, Sensor Electr. Microsyst. Technol. 3, N 9, 62 (2012).
</li>
<li> A. Rogalski, Infrared Detectors (CRC Press, Boca Raton, 2010).
</li>
<li> V.V. Tetyorkin, Z.F. Icasiv, and F.F. Sizov, Ukr. Fiz. Zh. 44, 1128 (1999).
</li>
<li> F.F. Sizov, N.I. Klyui, A.N. Luk'yanov, R.K. Savkina, A.B. Smirnov, and A.Z. Evmenova, Techn. Phys. Lett. 34, 377 (2008).
&nbsp;<a href="https://doi.org/10.1134/S1063785008050052">https://doi.org/10.1134/S1063785008050052</a>
</li>
<li> M.I. Ibragimova, V.Yu. Petukhov, and I.B. Khaibullin, Fiz. Tekh. Poluprovodn. 27, 560 (1993).
</li>
<li> R.K. Savkina, A.B. Smirnov, and F.F. Sizov, Semicond. Sci. Technol. 22, 97 (2007).
&nbsp;<a href="https://doi.org/10.1088/0268-1242/22/2/016">https://doi.org/10.1088/0268-1242/22/2/016</a>
</li>
<li> Z.B. Stoinov, B.M. Grafov, B. Savova-Stoinova, and V.V. Elkin, Electrochemical Impedance (Nauka, Moscow, 1991) (in Russian).
</li>
<li> Mercury Cadmium Telluride: Growth, Properties and Applications, edited by P. Capper and J.W. Garland (Wiley, London, 2011).
</li>
<li> K.D. Mynbaev and V.I. Ivanov-Omskiy, Semiconductors 40, 1 (2006).
&nbsp;<a href="https://doi.org/10.1134/S1063782606010015">https://doi.org/10.1134/S1063782606010015</a>
</li>
<li> L.S. Smirnov, Problems of Semiconductor Radiation Technology (Nauka, Novosibirsk, 1980) (in Russian).
</li>
<li> V.G. Litovchenko and B.N. Romanyuk, Fiz. Tekh. Poluprovodn. 1, 150 (1983).
</li>
<li> V.A. Uskov, A.A. Krasnov, and V.A. Ivanov, in Proceedings of the 6-th All-Union Conference on Gallium Arsenide Researches (Tomsk, 1987), Vol. 2, p. 134 (in Russian).
</li>
<li> P.N. Krylov and A.A. Lebedev, Vestn. Udmursk. Univ. 4, 29 (2006).
</li>
<li> P.N. Krylov, Yu.V. Rats, and A.L. Sterkhov, Vestn. Nizhegorod. Gos. Univ. Ser. Fiz. Tverd. Tela 2, 79 (1998).
</li>
<li> V.B. Lazarev, Physical and Chemical Properties of Semiconductor Substances (Nauka, Moscow, 1979) (in Russian).
</li>
<li> S. Holander-Gleixner, B.L. Williams, H.G. Robinson, and C.R. Helms, J. Electron. Mater. 71, 692 (1997).
</li>
<li> A. Cerutti and C. Ghezzi, Phys. Status Solidi A 17, 273 (1973).
&nbsp;<a href="https://doi.org/10.1002/pssa.2210170127">https://doi.org/10.1002/pssa.2210170127</a>
</li>
<li> H. Ebe, M. Tanaka, and Y. Miyamoto, J. Electron. Mater. 28, 854 (1999).
&nbsp;<a href="https://doi.org/10.1007/s11664-999-0083-1">https://doi.org/10.1007/s11664-999-0083-1</a>
</li>
<li> R.A. Lidin, L.L. Andreeva, and V.A. Molochko, Constants of Inorganic Substances (Begell House, New York, 1995).
</li>
<li> C.R. Helms, J. Vac. Sci. Technol. A 8, 1178 (1990).
&nbsp;<a href="https://doi.org/10.1116/1.576940">https://doi.org/10.1116/1.576940</a>
</li>
<li> L.S. Palatnik, P.G. Cheremskoi, and M.Ya. Fuks, Pores in Films (Energoizdat, Moscow, 1982) (in Russian).
</li>
<li> A. Meldrum, R. Lopez, R.H. Magruder et al., Appl. Phys. 116, 255 (2010).
</li>
<li> J.D. Benson, J.B. Varesi, A.J. Stoltz, E.P.G. Smith, S.M. Johnson et al., J. Electron. Mater. 35, 1434 (2006).
&nbsp;<a href="https://doi.org/10.1007/s11664-006-0280-0">https://doi.org/10.1007/s11664-006-0280-0</a>
</li>
<li> E.V. Stukova, A.Yu. Milinskii, and V.V. Maslov, Izv. Ross. Gos. Pedagog. Univ. 95, 58 (2009).
</li>
</ol>

Published

2018-10-11

How to Cite

Smirnov, A. B., Lytvyn, O. S., Morozhenko, V. A., Savkina, R. K., Smoliy, M. I., Udovytska, R. S., & Sizov, F. F. (2018). Role of Mechanical Stresses at Ion Implantation of CdHgTe Solid Solutions. Ukrainian Journal of Physics, 58(9), 872. https://doi.org/10.15407/ujpe58.09.0872

Issue

Section

Solid matter

Most read articles by the same author(s)