Microstructure of thin Si–Sn Composite Films


  • V. B. Neimash Institute of Physics, Nat. Acad. of Sci. of Ukraine
  • V. M. Poroshin Institute of Physics, Nat. Acad. of Sci. of Ukraine
  • A. M. Kabaldin Institute of Physics, Nat. Acad. of Sci. of Ukraine
  • V. O. Yukhymchuk V.E. Lashkaryov Institute of Semiconductor Physics, Nat. Acad. of Sci. of Ukraine
  • P. E. Shepelyavyi V.E. Lashkaryov Institute of Semiconductor Physics, Nat. Acad. of Sci. of Ukraine
  • V. A. Makara Taras Shevchenko National University of Kyiv, Faculty of Physics
  • S. Yu. Larkin Public Joint Stock Company “Research and Production Concern Nauka”




Microstructure of thin composite films, Auger method, Raman spectroscopy


Microstructure investigations of thin Si-Sn alloy films were carried out, by using Auger and Raman spectroscopies, X-ray fluorescence analysis, and electron microscopy. The films were produced by the thermal-vacuum coevaporation of Si and Sn. The properties of films with the Sn content ranging from 1 to 5 wt.% are studied. A significant influence of the tin impurity on the formation of a film surface microrelief and nanocrystals in the amorphous matrix is found. The size of quasispherical formations on the film surface can be of the order of 100 nm. The volume fraction of the silicon nanocrystalline phase in a film can reach 90%. The roles of fabrication conditions and growth rate on the distributions of Sn and technological impurities C and O over the film surface and across the film thickness are analyzed.



<li> Zh.I. Alferov, V.M. Andreev, and V.D. Rumyantcev, Semiconductors 38, 899 (2004).
&nbsp;<a href="https://doi.org/10.1134/1.1787110">https://doi.org/10.1134/1.1787110</a>
<li> N.S. Lewis, Science 315, 798 (2007).
&nbsp;<a href="https://doi.org/10.1126/science.1137014">https://doi.org/10.1126/science.1137014</a>
<li> M.A. Green, K. Emery, Y. Hishikawa, and W. Warta, Prog. Photovolt. Res. Appl. 19, 84 (2011).
&nbsp;<a href="https://doi.org/10.1002/pip.1088">https://doi.org/10.1002/pip.1088</a>
<li> J. Ahn, K. Jun, and K. Lim, Appl. Phys. Lett. 82, 1718 (2003).
&nbsp;<a href="https://doi.org/10.1063/1.1561161">https://doi.org/10.1063/1.1561161</a>
<li> A.V. Shah, H. Schade, M. Vanesek et al., Prog. Photovolt. Res. Appl. 12, 113 (2004).
&nbsp;<a href="https://doi.org/10.1002/pip.533">https://doi.org/10.1002/pip.533</a>
<li> D. Girginoudi, N. Georgoulas, and F.J. Thanailakis, J. Appl. Phys. 66, 354 (1989).
&nbsp;<a href="https://doi.org/10.1063/1.343881">https://doi.org/10.1063/1.343881</a>
<li> A. Mohamedi, M.L. Th`eye, M. Vergnat, G. Marchal, and M. Piecuch, Phys. Rev. B 39, 3711 (1989).
&nbsp;<a href="https://doi.org/10.1103/PhysRevB.39.3711">https://doi.org/10.1103/PhysRevB.39.3711</a>
<li> G.N. Parsons, J.W. Cook, G. Lucovsky, S.Y. Lin, and M.J. Mantini, J. Vac. Sci. Technol. A 4, 470 (1986).
&nbsp;<a href="https://doi.org/10.1116/1.573910">https://doi.org/10.1116/1.573910</a>
<li> D.L. Williamson, C.R. Kerns, and S.K. Deb, J. Appl. Phys. 55, 2816 (1984).
&nbsp;<a href="https://doi.org/10.1063/1.333320">https://doi.org/10.1063/1.333320</a>
<li> R. Ragan, K.S. Min, and H.A. Atwater, Mater. Sci. Eng. B 87, 204 (2001).
&nbsp;<a href="https://doi.org/10.1016/S0921-5107(01)00732-2">https://doi.org/10.1016/S0921-5107(01)00732-2</a>
<li> A.J. Kurt and N.W. Ashcroft, Phys. Rev. B 54, 14480 (1996).
&nbsp;<a href="https://doi.org/10.1103/PhysRevB.54.14480">https://doi.org/10.1103/PhysRevB.54.14480</a>
<li> M. Vergnat, M. Piecuch, G. Marchal, and M. Gerl, Philos. Mag. B 51, 327 (1985).
&nbsp;<a href="https://doi.org/10.1080/13642818508240578">https://doi.org/10.1080/13642818508240578</a>
<li> S.Yu. Shiryaev, J.L. Hansen, P. Kringhøj, and A.N. Larsen, Appl. Phys. Lett. 67, 2287 (1995).
&nbsp;<a href="https://doi.org/10.1063/1.115128">https://doi.org/10.1063/1.115128</a>
<li> V.V. Voitovych, V.B. Neimash, N.N. Krasko, A.G. Kolosiuk, V.Yu. Povarchuk, R.M. Rudenko, V.A. Makara, R.V. Petrunya, V.O. Juhimchuk, and V.V. Strelchuk, Semiconductors 45, 1281 (2011).
&nbsp;<a href="https://doi.org/10.1134/S1063782611100253">https://doi.org/10.1134/S1063782611100253</a>
<li> C. Claeys, E. Simoen, V.B. Neimash, A. Kraitchinskii, M. Krasko, O. Puzenko, A. Blondeel, and P. Clauws, J. Electrochem. Soc. 148, G738 (2001).
&nbsp;<a href="https://doi.org/10.1149/1.1417558">https://doi.org/10.1149/1.1417558</a>
<li> V.B. Neimash, V.V. Voitovych, A.M. Kraichynskyi, L.I. Shpinar, M.M. Krasko, V.M. Popov, A.P. Pokanevych, M.I. Gorodynskyi, Yu.V. Pavlovskyi, V.M. Tsmots, and O.M. Kabaldin, Ukr. Fiz. Zh. 50, 492 (2005).
<li> J. Koh, A.S. Ferlauto, P.I. Rovira, R.J. Koval, C.R. Wronski, and R.W. Collins, J. Non-Cryst. Solids 266-269, 43 (2005).
&nbsp;<a href="https://doi.org/10.1016/S0022-3093(99)00716-4">https://doi.org/10.1016/S0022-3093(99)00716-4</a>
<li> E.I. Terukov, V.Kh. Kudoyarova, V.Yu. Davydov et al., Mater. Sci. Eng. B 69-70, 266 (2000).
&nbsp;<a href="https://doi.org/10.1016/S0921-5107(99)00306-2">https://doi.org/10.1016/S0921-5107(99)00306-2</a>
<li> R. Tsu, J. Non-Cryst. Solids 97-98, 163 (1988).
&nbsp;<a href="https://doi.org/10.1016/0022-3093(87)90038-X">https://doi.org/10.1016/0022-3093(87)90038-X</a>
<li> E. Bustarret, M.A. Hachicha, and V. Brunel, Appl. Phys. Lett. 52, 1675 (1978).
&nbsp;<a href="https://doi.org/10.1063/1.99054">https://doi.org/10.1063/1.99054</a>
<li> H. Richter, Z.P. Wang, and L. Ley, Solid State Commun. 39, 625 (1981).
&nbsp;<a href="https://doi.org/10.1016/0038-1098(81)90337-9">https://doi.org/10.1016/0038-1098(81)90337-9</a>
<li> H. Cambell and P.M. Fauchet, Solid State Commun. 58, 739 (1986).
&nbsp;<a href="https://doi.org/10.1016/0038-1098(86)90513-2">https://doi.org/10.1016/0038-1098(86)90513-2</a>



How to Cite

Neimash, V. B., Poroshin, V. M., Kabaldin, A. M., Yukhymchuk, V. O., Shepelyavyi, P. E., Makara, V. A., & Larkin, S. Y. (2018). Microstructure of thin Si–Sn Composite Films. Ukrainian Journal of Physics, 58(9), 865. https://doi.org/10.15407/ujpe58.09.0865



Solid matter

Most read articles by the same author(s)

1 2 > >>