A Density Functional Study of the Adsorption of Carbon Dioxide Molecule on Graphene

Authors

  • D. P. Thakur School of Physical Sciences, Swami Ramanand Teerth Marathwada University
  • N. P. Barde Badrinarayan Barwale Mahavidyala
  • P. P. Bardapurkar S.N. Arts, D.J. Malpani Commerce & B.N. Sarda Science College
  • R. S. Khairnar School of Physical Sciences, Swami Ramanand Teerth Marathwada University

DOI:

https://doi.org/10.15407/ujpe58.09.0841

Keywords:

graphene, adsorption, density functional theory, CO2

Abstract

The physisorption of a CO2 molecule on a graphene sheet using ab initio density functional theory is investigated. The geometrical structure of graphene, including various parameters viz. the bond lengths and bond angles are calculated for a graphene sheet under the adsorption of a CO2 gas. Additionally, the density of states of a graphene sheet is calculated with & without adsorption of CO2 molecules. It is observed that the CO2 molecule is adsorbed on the graphene sheet with the adsorption energy of about 61.7 meV or less. The HOMO-LUMO energy levels of the graphene sheet before and after the adsorption of a CO2 molecule remain unaltered. Therefore, the graphene sheet cannot detect a CO2 molecule owing to their weak interaction.

References

<ol>
<li> Adsorption: Theory, Modeling and Analysis, edited by J. T´oth (M. Dekker, New York, 2001).
</li>
<li> F. Rouquerol, L. Rouquerol, and K. Sing, Adsorption by Powders and Porous Solids: Principles, Methodology, and Applications (Academic Press, London, 1999).
</li>
<li> A. Hinchliffe, Molecular Modelling for Beginners (Wiley, New York, 2008).
</li>
<li> D.S. Sholl and J.A. Steckel, Density Functional Theory: A Practical Introduction (Wiley, New York, 2009).
&nbsp;<a href="https://doi.org/10.1002/9780470447710">https://doi.org/10.1002/9780470447710</a>
</li>
<li> K. Capelle, Braz. J. Phys. 36, 4A (2006).
&nbsp;<a href="https://doi.org/10.1590/S0103-97332006000700035">https://doi.org/10.1590/S0103-97332006000700035</a>
</li>
<li> W. Kohn and L.J. Sham, Phys. Rev. 140, A1133 (1965).
&nbsp;<a href="https://doi.org/10.1103/PhysRev.140.A1133">https://doi.org/10.1103/PhysRev.140.A1133</a>
</li>
<li> G. Lee, B. Lee, J. Kim, and K. Cho, J. Phys. Chem. C 113 (2009).
</li>
<li> P.V.C. Medeiros, F. de Brito Mota, A.J.S. Mascarenhas, and C.M.C. de Castilho, Nanotechnology, 21, 485701 (2010).
&nbsp;<a href="https://doi.org/10.1088/0957-4484/21/48/485701">https://doi.org/10.1088/0957-4484/21/48/485701</a>
</li>
<li> O. Leenaerts, B. Partoens, and F.M. Peeters, Phys. Rev. B 77, 125416 (2008).
&nbsp;<a href="https://doi.org/10.1103/PhysRevB.77.125416">https://doi.org/10.1103/PhysRevB.77.125416</a>
</li>
<li> S.J. Gong, W. Sheng, Z.Q. Yang, and J.H. Chu, J. Phys.: Condens. Matter 22, 245502 (2010).
&nbsp;<a href="https://doi.org/10.1088/0953-8984/22/24/245502">https://doi.org/10.1088/0953-8984/22/24/245502</a>
</li>
<li> Bing Huang, Zuanji Li, Zhirong Liu, Gang Zhou, Shaogang Hao, Jian Wo, Bing Lin Gu, and L. Wenhui, J. Phys. Chem. C 112, 13442 (2008).
&nbsp;<a href="https://doi.org/10.1021/jp8021024">https://doi.org/10.1021/jp8021024</a>
</li>
<li> A. Montoya, F. Mondragon, and Thanh N. Truong, Carbon, 41, 29 (2003).
&nbsp;<a href="https://doi.org/10.1016/S0008-6223(02)00249-X">https://doi.org/10.1016/S0008-6223(02)00249-X</a>
</li>
<li> Z.M. Ao, J. Yang, S. Li, and Q. Jiang, Chem. Phys. Lett. 461, 4 (2008).
&nbsp;<a href="https://doi.org/10.1016/j.cplett.2008.07.039">https://doi.org/10.1016/j.cplett.2008.07.039</a>
</li>
<li> K.D. Hammonds, I.R. McDonald, and D.J. Tildesley, Mol. Phys. 70, 2 (1990).
&nbsp;<a href="https://doi.org/10.1080/00268979000100931">https://doi.org/10.1080/00268979000100931</a>
</li>
<li> Jijun Zhao, Alper Buldum, Jie Han, and Jian Ping Lu, Nanotechnology, 13, 195 (2002).
&nbsp;<a href="https://doi.org/10.1088/0957-4484/13/2/312">https://doi.org/10.1088/0957-4484/13/2/312</a>
</li>
<li> I. Carrilla, E. Rangel, and L.F. Maga˜na, Carbon, 47, 11 (2009).
</li>
<li> M.J. Frisch et al., Gaussian 03 (Gaussian, Pittsburgh, 2003).
</li>
</ol>

Downloads

Published

2018-10-11

How to Cite

Thakur, D. P., Barde, N. P., Bardapurkar, P. P., & Khairnar, R. S. (2018). A Density Functional Study of the Adsorption of Carbon Dioxide Molecule on Graphene. Ukrainian Journal of Physics, 58(9), 841. https://doi.org/10.15407/ujpe58.09.0841

Issue

Section

Solid matter

Most read articles by the same author(s)