Studies of the Vibrational Energy Level of H2O by Algebraic and DFT Approaches

Authors

  • S. R. Karumuri Department of Electronics & Instrumentation, Lakireddy Bali Reddy College of Engineering Mylavaram, Krishna District
  • V. U. M. Rao Department of Applied Mathematics, College of Science & Technology, Andhra University
  • J. Vijaya Sekhar Department of Mathematics, Jawaharlal Nehru Technological University
  • M. S. Surendrababu Department of Mathematics & Chemistry, GITAM University
  • T. B. Patrudu Department of Mathematics & Chemistry, GITAM University
  • N. Vamsikrishna Department of Mathematics & Chemistry, GITAM University
  • K. S. Babu Department of Physics, Miracle Engineering College
  • V. S. S. Kumar Department of Electronics & Instrumentation, Rajeev Gandhi Memorial Engineering College
  • G. Srinivas Department of Physics, KL University

DOI:

https://doi.org/10.15407/ujpe58.09.0836

Keywords:

Lie-algebraic method, vibrational spectra, density functional theory (DFT), H2O

Abstract

The molecular spectroscopy is a branch of physics that deals with the interaction of electromagnetic radiation with matter. Within new theoretical approaches, we have calculated the stretching and bending vibrational energy levels of a water molecule in fundamental and overtone modes. The present calculation not only predicts the higher overtones, but also shows good agreement with a few experimental data.

References

<ol>

<li> J.L. Dunham, Phys. Rev. 41, 721 (1932).
&nbsp;<a href="https://doi.org/10.1103/PhysRev.41.721">https://doi.org/10.1103/PhysRev.41.721</a>
</li>
<li> F. Iachello, Chem. Phys. Lett. 78, 581 (1981).
&nbsp;<a href="https://doi.org/10.1016/0009-2614(81)85262-1">https://doi.org/10.1016/0009-2614(81)85262-1</a>
</li>
<li> F. Iachello and R.D. Levine, J. Chem. Phys. 77, 3046 (1982).
&nbsp;<a href="https://doi.org/10.1063/1.444228">https://doi.org/10.1063/1.444228</a>
</li>
<li> O.S. van Roosmalen, F. Iachello, R.D. Levine, and A.E.L. Dieperink, J. Chem. Phys. 79, 2515 (1983), O.S. van Roosmalen, I. Benjamin, and R.D. Levine, J. Chem. Phys. 81, 5986 (1984).
&nbsp;<a href="https://doi.org/10.1063/1.447600">https://doi.org/10.1063/1.447600</a>
</li>
<li> F. Iachello, S. Oss, and R. Lemus, J. Mol. Spectrosc. 149, 132 (1991);
&nbsp;<a href="https://doi.org/10.1016/0022-2852(91)90148-4">https://doi.org/10.1016/0022-2852(91)90148-4</a>
&nbsp;
F. Iachello, S. Oss, and L. Viola, Mol. Phys. 78, 545 (1992);
&nbsp;<a href="https://doi.org/10.1080/00268979300100381">https://doi.org/10.1080/00268979300100381</a>
&nbsp;
F. Iachello, S. Oss, and L. Viola, Mol. Phys. 78, 561 (1993).
&nbsp;<a href="https://doi.org/10.1080/00268979300100391">https://doi.org/10.1080/00268979300100391</a>
</li>
<li> J. Choudhury, S.R. Karumuri, R. Sinha, N.K. Sarkar, and R. Bhattacharjee, Indian J. Phys. 84, 659 (2010).
&nbsp;<a href="https://doi.org/10.1007/s12648-010-0067-2">https://doi.org/10.1007/s12648-010-0067-2</a>
</li>
<li> N.K. Sarkar, J. Choudhury, and R. Bhattacharjee, Mol. Phys. 104, 3051 (2006).
&nbsp;<a href="https://doi.org/10.1080/00268970600954235">https://doi.org/10.1080/00268970600954235</a>
</li>
<li> N.K. Sarkar, J. Choudhury, and R. Bhattacharjee, Indian J. Phys. 82, 767 (2008).
</li>
<li> J. Choudhury, S.R. Karumuri, N.K. Sarkar, and R. Bhattacharjee, Pramana J. Phys. 71, 439 (2008).
</li>
<li> S.R. Karumuri, N.K. Sarkar, J. Choudhury, and R. Bhattacharjee, Mol. Phys. 106 (14), 1733 (2008);
&nbsp;<a href="https://doi.org/10.1080/00268970802248998">https://doi.org/10.1080/00268970802248998</a>
&nbsp;
S.R. Karumuri, J. Mol. Spectr. 259, 86 (2010).
&nbsp;<a href="https://doi.org/10.1016/j.jms.2009.11.005">https://doi.org/10.1016/j.jms.2009.11.005</a>
</li>
<li> F. Iachello and S. Oss, J. Mol. Spectrosc. 142, 85 (1990).
&nbsp;<a href="https://doi.org/10.1016/0022-2852(90)90293-Y">https://doi.org/10.1016/0022-2852(90)90293-Y</a>
</li>
<li> N. Dozova, L. Krim, M.E. Alikhani, and N. Lecome, J. Phys. Chem. A 110, 11617 (2006).
&nbsp;<a href="https://doi.org/10.1021/jp0625614">https://doi.org/10.1021/jp0625614</a>
</li>
<li> S.A. Siddique, T. Rasheed, M. Faisal, A. Kumar Pandey, and S.B. Khan, J. Spectrosc. 27, 185 (2012).
&nbsp;<a href="https://doi.org/10.1155/2012/614710">https://doi.org/10.1155/2012/614710</a>
</li>
<li> T. Rasheed and S. Ahmad, Indian J. Phys. 85, 239 (2011).
&nbsp;<a href="https://doi.org/10.1007/s12648-011-0001-2">https://doi.org/10.1007/s12648-011-0001-2</a>
</li>
<li> M. Arivazhaganand and S. Prabhakaran, Indian Pure Appl. Phys. 50, 26 (2012).
</li>
<li> S. Oss, Adv. Chem. Phys. 93, 455 (1996).
&nbsp;<a href="https://doi.org/10.1002/9780470141526.ch8">https://doi.org/10.1002/9780470141526.ch8</a>
</li>
<li> F. Iachello and R.D. Levine, Algebraic Theory of Molecules (Oxford Univ. Press, Oxford, 1995).
</li>

</ol>

Downloads

Published

2018-10-11

How to Cite

Karumuri, S. R., Rao, V. U. M., Sekhar, J. V., Surendrababu, M. S., Patrudu, T. B., Vamsikrishna, N., Babu, K. S., Kumar, V. S. S., & Srinivas, G. (2018). Studies of the Vibrational Energy Level of H2O by Algebraic and DFT Approaches. Ukrainian Journal of Physics, 58(9), 836. https://doi.org/10.15407/ujpe58.09.0836

Issue

Section

Soft matter