Elastic Strains in SiGe Heterostructures with Non-Uniform Quantum Dots

  • V. V. Kuryliuk Taras Shevchenko National University of Kyiv, Faculty of Physics
Keywords: Stranski–Krastanov growth mode, Green’s functions, finite element method, wetting layer, stress tensor, elastic moduli tensor, rigid boundary conditions, node, Galerkin method

Abstract

Elastic strain distributions in SiGe heterostructures with quantum dots have been simulated with the use of the finite element method. The effect of a non-uniform germanium distribution in the nanoislands on the spatial dependence and the magnitude of elastic fields was studied. It is shown that quantum dots with a uniform component content are more strained in comparison with non-uniform nanoislands.

References



  1. K.L. Wang, D. Cha, J. Liu, and C. Chen, Proc. IEEE 95, 1866 (2007).
     https://doi.org/10.1109/JPROC.2007.900971

  2. E. Finkman, N. Shuall, A. Vardi, V. Le Thanh, and S.E. Schacham, J. Appl. Phys. 103, 093114 (2008).
     https://doi.org/10.1063/1.2919151

  3. M.L. Lee, G. Dezsi, and R. Venkatasubramanian, Thin Solid Films 518, S76 (2010).
     https://doi.org/10.1016/j.tsf.2009.10.060

  4. D.J. Lockwood and L. Tsybeskov, Phys. Status Solidi C 8, 2870 (2011).
     https://doi.org/10.1002/pssc.201084032

  5. F. Lipps, F. Pezzoli, M. Stoffel et al., Phys. Rev. B 81, 125312 (2010).
     https://doi.org/10.1103/PhysRevB.81.125312

  6. L.V. Arapkina and V.A. Yuriev, Usp. Fiz. Nauk 180, 289 (2010).
     https://doi.org/10.3367/UFNr.0180.201003e.0289

  7. M.O. Baykan, S.E. Thompson, and T. Nishida, J. Appl. Phys. 108, 093716 (2010).
     https://doi.org/10.1063/1.3488635

  8. M.I. Alonso, M. de la Calle, J.O. Osso, M. Garriga, and A.R. Goni, J. Appl. Phys. 98, 033530 (2005).
     https://doi.org/10.1063/1.2006229

  9. M.Ya. Valakh, V.O. Yukhymchuk, V.M. Dzhagan, O.S. Lytvyn, A.G. Milekhin, A.I. Nikiforov, O.P. Pchelyakov, F. Alsina, and J. Pascual, Nanotechnology 16, 1464 (2005).
     https://doi.org/10.1088/0957-4484/16/9/007

  10. V.O. Yukhymchuk, V.M. Dzhagan, A.M. Yaremko, and M.Ya. Valakh, Eur. Phys. J. B 74, 409 (2010).
     https://doi.org/10.1140/epjb/e2010-00082-9

  11. M.Ya. Valakh, P.M. Lytvyn, A.S. Nikolenko, V.V. Strelchuk, Z.F. Krasilnik, and A.N. Novikov, Appl. Phys. Lett. 96, 141909 (2010).
     https://doi.org/10.1063/1.3383241

  12. G. Schmidt and K. Eberl, Phys. Rev. B 61, 13721 (2000).
     https://doi.org/10.1103/PhysRevB.61.13721

  13. M.H. Liao, C.-H. Lee, T.A. Hung, and C.W. Liu, J. Appl. Phys. 102, 053520 (2007).
     https://doi.org/10.1063/1.2777686

  14. V. Kuryliuk, O. Korotchenkov and A. Cantarero, Phys. Rev. B 85, 075406 (2012).
     https://doi.org/10.1103/PhysRevB.85.075406

  15. E. Melezhik and O. Korotchenkov, J. Appl. Phys. 105, 023525 (2009).
     https://doi.org/10.1063/1.2777686

  16. Y. Kikuchi, H. Sugii, and K. Shintani, J. Appl. Phys. 89, 1191 (2001).
     https://doi.org/10.1063/1.1335822

  17. G.R. Liu, and S.S. Quek Jerry, Semicond. Sci. Technol. 17, 630 (2002).
     https://doi.org/10.1088/0268-1242/17/6/323

  18. N.V. Medhekar, V. Hegadekatte, and V.B. Shenoy, Phys. Rev. Lett. 100, 106104 (2008).
     https://doi.org/10.1103/PhysRevLett.100.106104

  19. O.C. Zienkiewicz and R.L. Taylor, The Finite Element Method, Vol. 1 (McGraw-Hill, London, 1989).

  20. B.A. Auld, Acoustic Fields and Waves in Solids (Wiley, New York, 1973).


Published
2018-10-10
How to Cite
Kuryliuk, V. (2018). Elastic Strains in SiGe Heterostructures with Non-Uniform Quantum Dots. Ukrainian Journal of Physics, 58(8), 780. https://doi.org/10.15407/ujpe58.08.0780
Section
Nanosystems