Elastic Strains in SiGe Heterostructures with Non-Uniform Quantum Dots

Authors

  • V. V. Kuryliuk Taras Shevchenko National University of Kyiv, Faculty of Physics

DOI:

https://doi.org/10.15407/ujpe58.08.0780

Keywords:

Stranski–Krastanov growth mode, Green’s functions, finite element method, wetting layer, stress tensor, elastic moduli tensor, rigid boundary conditions, node, Galerkin method

Abstract

Elastic strain distributions in SiGe heterostructures with quantum dots have been simulated with the use of the finite element method. The effect of a non-uniform germanium distribution in the nanoislands on the spatial dependence and the magnitude of elastic fields was studied. It is shown that quantum dots with a uniform component content are more strained in comparison with non-uniform nanoislands.

References

<ol>

<li> K.L. Wang, D. Cha, J. Liu, and C. Chen, Proc. IEEE 95, 1866 (2007).
&nbsp;<a href="https://doi.org/10.1109/JPROC.2007.900971">https://doi.org/10.1109/JPROC.2007.900971</a>
</li>
<li> E. Finkman, N. Shuall, A. Vardi, V. Le Thanh, and S.E. Schacham, J. Appl. Phys. 103, 093114 (2008).
&nbsp;<a href="https://doi.org/10.1063/1.2919151">https://doi.org/10.1063/1.2919151</a>
</li>
<li> M.L. Lee, G. Dezsi, and R. Venkatasubramanian, Thin Solid Films 518, S76 (2010).
&nbsp;<a href="https://doi.org/10.1016/j.tsf.2009.10.060">https://doi.org/10.1016/j.tsf.2009.10.060</a>
</li>
<li> D.J. Lockwood and L. Tsybeskov, Phys. Status Solidi C 8, 2870 (2011).
&nbsp;<a href="https://doi.org/10.1002/pssc.201084032">https://doi.org/10.1002/pssc.201084032</a>
</li>
<li> F. Lipps, F. Pezzoli, M. Stoffel et al., Phys. Rev. B 81, 125312 (2010).
&nbsp;<a href="https://doi.org/10.1103/PhysRevB.81.125312">https://doi.org/10.1103/PhysRevB.81.125312</a>
</li>
<li> L.V. Arapkina and V.A. Yuriev, Usp. Fiz. Nauk 180, 289 (2010).
&nbsp;<a href="https://doi.org/10.3367/UFNr.0180.201003e.0289">https://doi.org/10.3367/UFNr.0180.201003e.0289</a>
</li>
<li> M.O. Baykan, S.E. Thompson, and T. Nishida, J. Appl. Phys. 108, 093716 (2010).
&nbsp;<a href="https://doi.org/10.1063/1.3488635">https://doi.org/10.1063/1.3488635</a>
</li>
<li> M.I. Alonso, M. de la Calle, J.O. Osso, M. Garriga, and A.R. Goni, J. Appl. Phys. 98, 033530 (2005).
&nbsp;<a href="https://doi.org/10.1063/1.2006229">https://doi.org/10.1063/1.2006229</a>
</li>
<li> M.Ya. Valakh, V.O. Yukhymchuk, V.M. Dzhagan, O.S. Lytvyn, A.G. Milekhin, A.I. Nikiforov, O.P. Pchelyakov, F. Alsina, and J. Pascual, Nanotechnology 16, 1464 (2005).
&nbsp;<a href="https://doi.org/10.1088/0957-4484/16/9/007">https://doi.org/10.1088/0957-4484/16/9/007</a>
</li>
<li> V.O. Yukhymchuk, V.M. Dzhagan, A.M. Yaremko, and M.Ya. Valakh, Eur. Phys. J. B 74, 409 (2010).
&nbsp;<a href="https://doi.org/10.1140/epjb/e2010-00082-9">https://doi.org/10.1140/epjb/e2010-00082-9</a>
</li>
<li> M.Ya. Valakh, P.M. Lytvyn, A.S. Nikolenko, V.V. Strelchuk, Z.F. Krasilnik, and A.N. Novikov, Appl. Phys. Lett. 96, 141909 (2010).
&nbsp;<a href="https://doi.org/10.1063/1.3383241">https://doi.org/10.1063/1.3383241</a>
</li>
<li> G. Schmidt and K. Eberl, Phys. Rev. B 61, 13721 (2000).
&nbsp;<a href="https://doi.org/10.1103/PhysRevB.61.13721">https://doi.org/10.1103/PhysRevB.61.13721</a>
</li>
<li> M.H. Liao, C.-H. Lee, T.A. Hung, and C.W. Liu, J. Appl. Phys. 102, 053520 (2007).
&nbsp;<a href="https://doi.org/10.1063/1.2777686">https://doi.org/10.1063/1.2777686</a>
</li>
<li> V. Kuryliuk, O. Korotchenkov and A. Cantarero, Phys. Rev. B 85, 075406 (2012).
&nbsp;<a href="https://doi.org/10.1103/PhysRevB.85.075406">https://doi.org/10.1103/PhysRevB.85.075406</a>
</li>
<li> E. Melezhik and O. Korotchenkov, J. Appl. Phys. 105, 023525 (2009).
&nbsp;<a href="https://doi.org/10.1063/1.3072674">https://doi.org/10.1063/1.2777686</a>
</li>
<li> Y. Kikuchi, H. Sugii, and K. Shintani, J. Appl. Phys. 89, 1191 (2001).
&nbsp;<a href="https://doi.org/10.1063/1.1335822">https://doi.org/10.1063/1.1335822</a>
</li>
<li> G.R. Liu, and S.S. Quek Jerry, Semicond. Sci. Technol. 17, 630 (2002).
&nbsp;<a href="https://doi.org/10.1088/0268-1242/17/6/323">https://doi.org/10.1088/0268-1242/17/6/323</a>
</li>
<li> N.V. Medhekar, V. Hegadekatte, and V.B. Shenoy, Phys. Rev. Lett. 100, 106104 (2008).
&nbsp;<a href="https://doi.org/10.1103/PhysRevLett.100.106104">https://doi.org/10.1103/PhysRevLett.100.106104</a>
</li>
<li> O.C. Zienkiewicz and R.L. Taylor, The Finite Element Method, Vol. 1 (McGraw-Hill, London, 1989).
</li>
<li> B.A. Auld, Acoustic Fields and Waves in Solids (Wiley, New York, 1973).
</li>

</ol>

Published

2018-10-10

How to Cite

Kuryliuk, V. V. (2018). Elastic Strains in SiGe Heterostructures with Non-Uniform Quantum Dots. Ukrainian Journal of Physics, 58(8), 780. https://doi.org/10.15407/ujpe58.08.0780

Issue

Section

Nanosystems