Influence of High Temperature Annealing on the Structure and the Intrinsic Absorption Edge of Thin-Film Silicon Doped With Tin

Authors

  • R. M. Rudenko Taras Shevchenko National University of Kyiv, Faculty of Physics
  • V. V. Voitovych Institute of Physics, Nat. Acad. of Sci. of Ukraine
  • M. M. Kras’ko Institute of Physics, Nat. Acad. of Sci. of Ukraine
  • A. G. Kolosyuk Institute of Physics, Nat. Acad. of Sci. of Ukraine
  • A. M. Kraichynskyi Institute of Physics, Nat. Acad. of Sci. of Ukraine
  • V. O. Yukhymchuk V.E. Lashkaryov Institute of Semiconductor Physics, Nat. Acad. of Sci. of Ukraine
  • V. A. Makara Taras Shevchenko National University of Kyiv, Faculty of Physics

DOI:

https://doi.org/10.15407/ujpe58.08.0769

Keywords:

thin-film silicon, doping with tin, crystallization, optical band gap, isochronal annealing

Abstract

Influence of isochronal annealing in the range of 350–1100 oC on the structural properties and the intrinsic absorption edge in thin silicon films doped with tin (a-SiSn) has been studied. It is found that as-deposited a-SiSn films with a tin content of about 4 at.%, unlike undoped a-Si ones, contain silicon nanocrystals with a crystallite size of about 4 nm and a crystalline fraction of about 65%. It is shown that, in the course of isochronal annealing of a-SiSn specimens in the interval of 350–1100 oC, the size of silicon nanocrystals in the amorphous matrix gradually increases to about 7 nm, and the fraction of crystalline phase to about 100%. Crystallization in undoped a-Si is observed only after the annealing at temperatures above 700 oC. The influence of tin on the optical band gap in a-Si as a function of the isochronal annealing temperature is analyzed.

References

<ol>

<li> V.P. Afanasiev, A.S. Gudovskikh, A.Z. Kazak-Kazakevich, A.P. Sazanov, I.N. Trapeznikova, and E.I. Terukov, Semiconductors 38, 221 (2004).
&nbsp;<a href="https://doi.org/10.1134/1.1648381">https://doi.org/10.1134/1.1648381</a>
</li>
<li> A.V. Shah, H. Schade, M. Vanecek, J. Meier, E. VallatSauvain, N. Wyrsch, U. Kroll, C. Droz, and J. Bailat, Prog. Photovolt. Res. Appl. 12, No. 23, 113 (2004).
&nbsp;<a href="https://doi.org/10.1002/pip.533">https://doi.org/10.1002/pip.533</a>
</li>
<li> M. Vergant, G. Marchal, and M. Piecuch, Rev. Phys. Appl. 22, 1803 (1987).
&nbsp;<a href="https://doi.org/10.1051/rphysap:0198700220120180300">https://doi.org/10.1051/rphysap:0198700220120180300</a>
</li>
<li> M. Jeon, H. Uchiyama, and K. Kamisako, Mater. Lett. 63, 246 (2009).
&nbsp;<a href="https://doi.org/10.1016/j.matlet.2008.10.005">https://doi.org/10.1016/j.matlet.2008.10.005</a>
</li>
<li> R.S. Wagner and W.C. Ellis, Appl. Phys. Lett. 4, 89 (1964).
&nbsp;<a href="https://doi.org/10.1063/1.1753975">https://doi.org/10.1063/1.1753975</a>
</li>
<li> J.A. Schmidt, N. Budini, P. Rinaldi, R.D. Arce, and R.H. Buitrago, J. Phys. Conf. Ser. 167, ID 012046 (2009).
</li>
<li> V.V. Voitovych, V.B. Neimash, N.N. Krasko, A.G. Kolosiuk, V.Y. Povarchuk, R.M. Rudenko, V.A. Makara, R.V. Petrunya, V.O. Juhimchuk, and V.V. Strelchuk, Semiconductors 45, 1281 (2011).
&nbsp;<a href="https://doi.org/10.1134/S1063782611100253">https://doi.org/10.1134/S1063782611100253</a>
</li>
<li> A.V. Vasin, A.V. Rusavsky, V.S. Lysenko, A.N. Nazarov, V.I. Kushnirenko, S.P. Starik, and V.G. Stepanov, Semiconductors 39, 572 (2005).
&nbsp;<a href="https://doi.org/10.1134/1.1923567">https://doi.org/10.1134/1.1923567</a>
</li>
<li> P. Mishra and K.P. Jain, Phys. Rev. B. 64, 073304 (2001).
&nbsp;<a href="https://doi.org/10.1103/PhysRevB.64.073304">https://doi.org/10.1103/PhysRevB.64.073304</a>
</li>
<li> H. Campbell and P.M. Fauchet, Solid State Commun. 58, 739 (1986).
&nbsp;<a href="https://doi.org/10.1016/0038-1098(86)90513-2">https://doi.org/10.1016/0038-1098(86)90513-2</a>
</li>
<li> S.V. Gajsler, O.I. Semenova, R.G. Sharafutdinov, and B.A. Kolesov, Phys. Solid State 46, 1528 (2004).
&nbsp;<a href="https://doi.org/10.1134/1.1788789">https://doi.org/10.1134/1.1788789</a>
</li>
<li> J. Tauc, R. Grigorovici, and A. Vancu, Phys. Status Solidi 15, 627 (1966).
&nbsp;<a href="https://doi.org/10.1002/pssb.19660150224">https://doi.org/10.1002/pssb.19660150224</a>
</li>
<li> G.D. Cody, T. Tiedje, B. Abeles, T.D. Moustakas, B. Brooks, and Y. Goldstein, J. Phys. (Paris) 42 (C4), 301 (1981).
</li>
<li> G.P. Kuz'min, M.E. Karasev, E.M. Khokhlov, N.N. Kononov, S.B. Korovin, V.G. Plotnichenko, S.N. Polyakov, V.I. Pustovoy, and O.V. Tikhonevitch, Laser Physics 10, 939 (2000).
</li>
<li> S. Roorda, S. Doorn, W.C. Sinke, P.M.L.O. Scholte, and E. van Loenen, Phys. Rev. Lett. 62, 1880 (1989).
&nbsp;<a href="https://doi.org/10.1103/PhysRevLett.62.1880">https://doi.org/10.1103/PhysRevLett.62.1880</a>
</li>
<li> Y.M. Niquet, C. Delerue, G. Allan, and M. Lannoo, Phys. Rev. B 62, 5109 (2000).
&nbsp;<a href="https://doi.org/10.1103/PhysRevB.62.5109">https://doi.org/10.1103/PhysRevB.62.5109</a>
</li>

</ol>

Published

2018-10-10

How to Cite

Rudenko, R. M., Voitovych, V. V., Kras’ko, M. M., Kolosyuk, A. G., Kraichynskyi, A. M., Yukhymchuk, V. O., & Makara, V. A. (2018). Influence of High Temperature Annealing on the Structure and the Intrinsic Absorption Edge of Thin-Film Silicon Doped With Tin. Ukrainian Journal of Physics, 58(8), 769. https://doi.org/10.15407/ujpe58.08.0769

Issue

Section

Solid matter