Spin Waves in Arrays of Magnetic Nanodots with Magnetodipolar Coupling

  • R. V. Verba Taras Shevchenko National University of Kyiv
Keywords: spin wave, magnetic nanodot, magnonic crystal, Gilbert damping parameter, Brillouin zone, Landau–Lifshitz equation

Abstract

A general theory of collective spin-wave excitations in finite and infinite periodic arrays of magnetic nanodots with magnetodipolar coupling has been developed. Non-uniform profiles of static and dynamic magnetizations in a dot are taken into account. The theory allows the spectra of collective excitations, their damping rates, excitation efficiencies by an external microwave field, and so on to be calculated and the stability of a stationary magnetic array configuration to be analyzed. An efficient technique has been proposed to calculate the spin-wave spectra in periodic arrays using the method of projection onto the eigenmodes of a solitary nanodot. The results obtained are compared with experimental data.

References



  1. Advanced Magnetic Nanostructures, edited by D.J. Sellmyer and R. Skomski (Springer, New York, 2006).

  2. J. Stohr and H.C. Siegmann, Magnetism. From Fundamentals to Nanoscale Dynamics (Springer, Berlin, 2006).

  3. M. Francardi, M. Sepioni, A. Gerardino, F. Sansone, G. Gubbiotti, M. Madami, S. Tacchi, and G. Carlotti, Microelectron. Eng. 87, 1614 (2010).
     https://doi.org/10.1016/j.mee.2009.10.039

  4. S. Tacchi, M. Madami, G. Gubbiotti, G. Carlotti, H. Tanigawa, T. Ono, and M.P. Kostylev, Phys. Rev. B 82, 024401 (2010).
     https://doi.org/10.1103/PhysRevB.82.024401

  5. S. Tacchi, F. Montoncello, M. Madami, G. Gubbiotti, G. Carlotti, L. Giovannini, R. Zivieri, F. Nizzoli, S. Jain, A.O. Adeyeye, and N. Singh, Phys. Rev. Lett. 107, 127204 (2011).
     https://doi.org/10.1103/PhysRevLett.107.127204

  6. R. Verba, G. Melkov, V. Tiberkevich, and A. Slavin, Phys. Rev. B 85, 114427 (2012).
     https://doi.org/10.1103/PhysRevB.85.014427

  7. R. Verba, Visn. Kyiv. Univ. Ser. Radiofiz. Electron. 17, 29 (2012).

  8. A.V. Chumak, A.A. Serga, B. Hillebrands, and M.P. Kostylev, Appl. Phys. Lett. 93, 022508 (2008).
     https://doi.org/10.1063/1.2963027

  9. A.V. Chumak, A.A. Serga, S. Wollf, B. Hillebrands, and M.P. Kostylev, Appl. Phys. Lett. 94, 172511 (2009).
     https://doi.org/10.1063/1.3127227

  10. R. Verba, G. Melkov, V. Tiberkevich, and A. Slavin, Appl. Phys. Lett. 100, 192412 (2012).
     https://doi.org/10.1063/1.4714772

  11. J. Topp, D. Heitmann, M.P. Kostylev, and D. Grundler, Phys. Rev. Lett. 104, 207205 (2010).
     https://doi.org/10.1103/PhysRevLett.104.207205

  12. S. Tacchi, M. Madami, G. Gubbiotti, G. Carlotti, S. Goolaup, A.O. Adeyeye, N. Singh, and M.P. Kostylev, Phys. Rev. B 82, 184408 (2010).
     https://doi.org/10.1103/PhysRevB.82.184408

  13. K.Y. Guslienko, R.W. Chantrell, and A.N. Slavin, Phys. Rev. B 68 024422 (2003).
     https://doi.org/10.1103/PhysRevB.68.024422

  14. K.Yu. Guslienko, J. Nanosci. Nanotech. 8, 2745 (2008).

  15. M. Dvornik, P.V. Bondarenko, B.A. Ivanov, and V.V. Kruglyak, J. Appl. Phys. 109, 07B912 (2011).
     https://doi.org/10.1063/1.3562509

  16. R. Zivieri, F. Montoncello, L. Giovannini, F. Nizzoli, S. Tacchi, M. Madami, G. Gubbiotti, G. Carlotti, and A.O. Adeyeye, Phys. Rev. B 83, 054431 (2011).
     https://doi.org/10.1103/PhysRevB.83.054431

  17. R. Zivieri, S. Tacchi, F. Montoncello, L. Giovannini, F. Nizzoli, M. Madami, G. Gubbiotti, G. Carlotti, S. Neusser, G. Duerr, and D. Grundler, Phys. Rev. B 85, 012403 (2012).
     https://doi.org/10.1103/PhysRevB.85.012403

  18. G. Gubbiotti, S. Tacchi, G. Carlotti, N. Singh, S. Goolaup, A.O. Adeyeye, and M. Kostylev, Appl. Phys. Lett. 90, 092503 (2007).
     https://doi.org/10.1063/1.2709909

  19. G. Gubbiotti, S. Tacchi, M. Madami, G. Carlotti, A.O. Adeyeye, and M. Kostylev, J. Phys. D 43, 264003 (2010).
     https://doi.org/10.1088/0022-3727/43/26/264003

  20. R. Arias and D.L. Mills, Phys. Rev. B 70, 104425 (2004).
     https://doi.org/10.1103/PhysRevB.70.104425

  21. P. Chu, D.L. Mills, and R. Arias, Phys. Rev. B 73, 094405 (2006).
     https://doi.org/10.1103/PhysRevB.73.094405

  22. A.Yu. Galkin, B.A. Ivanov, and C.E. Zaspel, Phys. Rev. B 74, 144419 (2006).
     https://doi.org/10.1103/PhysRevB.74.144419

  23. A.G. Gurevich and G.A. Melkov, Magnetization Oscillations and Waves (CRC Press, Boca Raton, 1996).

  24. K.Yu. Guslienko and A.N. Slavin, J. Magn. Magn. Matter. 323, 2418 (2011).
     https://doi.org/10.1016/j.jmmm.2011.05.020

  25. K.Yu. Guslienko, Appl. Phys. Lett. 75, 394 (1999).
     https://doi.org/10.1063/1.124386

  26. J.E.L. Bishop, A.Yu. Galkin, and B.A. Ivanov, Phys. Rev. B 65, 174403 (2002).
     https://doi.org/10.1103/PhysRevB.65.174403

  27. L.D. Landau and E.M. Lifshitz, Quantum Mechanics. Non-Relativistic Theory (Pergamon Press, New York, 1977).

  28. M. Beleggia and M. De Graef, J. Magn. Magn. Mater. 278, 270 (2004).
     https://doi.org/10.1016/j.jmmm.2003.12.1314

  29. N.W. Ashcroft and N.D. Mermin, Solid State Physics (Saunders College, Philadelphia, PA, 1976).

  30. B.A. Kalinikos and A.N. Slavin, J. Phys. C 19, 7013 (1986).

  31. C. Bayer, J. Jorzick, B. Hillebrands, S.O. Demokritov, R. Kouba, R. Bozinoski, A.N. Slavin, K.Y. Guslienko, D.V. Berkov, N.L. Gorn, and M.P. Kostylev, Phys. Rev. B 72, 064427 (2005).
     https://doi.org/10.1103/PhysRevB.72.064427

  32. M. Bailleul, R. Hollinger, and C. Fermon, Phys. Rev. B 73, 104424 (2006).
     https://doi.org/10.1103/PhysRevB.73.104424


Published
2018-10-10
How to Cite
Verba, R. (2018). Spin Waves in Arrays of Magnetic Nanodots with Magnetodipolar Coupling. Ukrainian Journal of Physics, 58(8), 758. https://doi.org/10.15407/ujpe58.08.0758
Section
Solid matter