Spin Waves in Arrays of Magnetic Nanodots with Magnetodipolar Coupling

Authors

  • R. V. Verba Taras Shevchenko National University of Kyiv

DOI:

https://doi.org/10.15407/ujpe58.08.0758

Keywords:

spin wave, magnetic nanodot, magnonic crystal, Gilbert damping parameter, Brillouin zone, Landau–Lifshitz equation

Abstract

A general theory of collective spin-wave excitations in finite and infinite periodic arrays of magnetic nanodots with magnetodipolar coupling has been developed. Non-uniform profiles of static and dynamic magnetizations in a dot are taken into account. The theory allows the spectra of collective excitations, their damping rates, excitation efficiencies by an external microwave field, and so on to be calculated and the stability of a stationary magnetic array configuration to be analyzed. An efficient technique has been proposed to calculate the spin-wave spectra in periodic arrays using the method of projection onto the eigenmodes of a solitary nanodot. The results obtained are compared with experimental data.

References

<ol>

<li> Advanced Magnetic Nanostructures, edited by D.J. Sellmyer and R. Skomski (Springer, New York, 2006).
</li>
<li> J. Stohr and H.C. Siegmann, Magnetism. From Fundamentals to Nanoscale Dynamics (Springer, Berlin, 2006).
</li>
<li> M. Francardi, M. Sepioni, A. Gerardino, F. Sansone, G. Gubbiotti, M. Madami, S. Tacchi, and G. Carlotti, Microelectron. Eng. 87, 1614 (2010).
&nbsp;<a href="https://doi.org/10.1016/j.mee.2009.10.039">https://doi.org/10.1016/j.mee.2009.10.039</a>
</li>
<li> S. Tacchi, M. Madami, G. Gubbiotti, G. Carlotti, H. Tanigawa, T. Ono, and M.P. Kostylev, Phys. Rev. B 82, 024401 (2010).
&nbsp;<a href="https://doi.org/10.1103/PhysRevB.82.024401">https://doi.org/10.1103/PhysRevB.82.024401</a>
</li>
<li> S. Tacchi, F. Montoncello, M. Madami, G. Gubbiotti, G. Carlotti, L. Giovannini, R. Zivieri, F. Nizzoli, S. Jain, A.O. Adeyeye, and N. Singh, Phys. Rev. Lett. 107, 127204 (2011).
&nbsp;<a href="https://doi.org/10.1103/PhysRevLett.107.127204">https://doi.org/10.1103/PhysRevLett.107.127204</a>
</li>
<li> R. Verba, G. Melkov, V. Tiberkevich, and A. Slavin, Phys. Rev. B 85, 114427 (2012).
&nbsp;<a href="https://doi.org/10.1103/PhysRevB.85.014427">https://doi.org/10.1103/PhysRevB.85.014427</a>
</li>
<li> R. Verba, Visn. Kyiv. Univ. Ser. Radiofiz. Electron. 17, 29 (2012).
</li>
<li> A.V. Chumak, A.A. Serga, B. Hillebrands, and M.P. Kostylev, Appl. Phys. Lett. 93, 022508 (2008).
&nbsp;<a href="https://doi.org/10.1063/1.2963027">https://doi.org/10.1063/1.2963027</a>
</li>
<li> A.V. Chumak, A.A. Serga, S. Wollf, B. Hillebrands, and M.P. Kostylev, Appl. Phys. Lett. 94, 172511 (2009).
&nbsp;<a href="https://doi.org/10.1063/1.3127227">https://doi.org/10.1063/1.3127227</a>
</li>
<li> R. Verba, G. Melkov, V. Tiberkevich, and A. Slavin, Appl. Phys. Lett. 100, 192412 (2012).
&nbsp;<a href="https://doi.org/10.1063/1.4714772">https://doi.org/10.1063/1.4714772</a>
</li>
<li> J. Topp, D. Heitmann, M.P. Kostylev, and D. Grundler, Phys. Rev. Lett. 104, 207205 (2010).
&nbsp;<a href="https://doi.org/10.1103/PhysRevLett.104.207205">https://doi.org/10.1103/PhysRevLett.104.207205</a>
</li>
<li> S. Tacchi, M. Madami, G. Gubbiotti, G. Carlotti, S. Goolaup, A.O. Adeyeye, N. Singh, and M.P. Kostylev, Phys. Rev. B 82, 184408 (2010).
&nbsp;<a href="https://doi.org/10.1103/PhysRevB.82.184408">https://doi.org/10.1103/PhysRevB.82.184408</a>
</li>
<li> K.Y. Guslienko, R.W. Chantrell, and A.N. Slavin, Phys. Rev. B 68 024422 (2003).
&nbsp;<a href="https://doi.org/10.1103/PhysRevB.68.024422">https://doi.org/10.1103/PhysRevB.68.024422</a>
</li>
<li> K.Yu. Guslienko, J. Nanosci. Nanotech. 8, 2745 (2008).
</li>
<li> M. Dvornik, P.V. Bondarenko, B.A. Ivanov, and V.V. Kruglyak, J. Appl. Phys. 109, 07B912 (2011).
&nbsp;<a href="https://doi.org/10.1063/1.3562509">https://doi.org/10.1063/1.3562509</a>
</li>
<li> R. Zivieri, F. Montoncello, L. Giovannini, F. Nizzoli, S. Tacchi, M. Madami, G. Gubbiotti, G. Carlotti, and A.O. Adeyeye, Phys. Rev. B 83, 054431 (2011).
&nbsp;<a href="https://doi.org/10.1103/PhysRevB.83.054431">https://doi.org/10.1103/PhysRevB.83.054431</a>
</li>
<li> R. Zivieri, S. Tacchi, F. Montoncello, L. Giovannini, F. Nizzoli, M. Madami, G. Gubbiotti, G. Carlotti, S. Neusser, G. Duerr, and D. Grundler, Phys. Rev. B 85, 012403 (2012).
&nbsp;<a href="https://doi.org/10.1103/PhysRevB.85.012403">https://doi.org/10.1103/PhysRevB.85.012403</a>
</li>
<li> G. Gubbiotti, S. Tacchi, G. Carlotti, N. Singh, S. Goolaup, A.O. Adeyeye, and M. Kostylev, Appl. Phys. Lett. 90, 092503 (2007).
&nbsp;<a href="https://doi.org/10.1063/1.2709909">https://doi.org/10.1063/1.2709909</a>
</li>
<li> G. Gubbiotti, S. Tacchi, M. Madami, G. Carlotti, A.O. Adeyeye, and M. Kostylev, J. Phys. D 43, 264003 (2010).
&nbsp;<a href="https://doi.org/10.1088/0022-3727/43/26/264003">https://doi.org/10.1088/0022-3727/43/26/264003</a>
</li>
<li> R. Arias and D.L. Mills, Phys. Rev. B 70, 104425 (2004).
&nbsp;<a href="https://doi.org/10.1103/PhysRevB.70.104425">https://doi.org/10.1103/PhysRevB.70.104425</a>
</li>
<li> P. Chu, D.L. Mills, and R. Arias, Phys. Rev. B 73, 094405 (2006).
&nbsp;<a href="https://doi.org/10.1103/PhysRevB.73.094405">https://doi.org/10.1103/PhysRevB.73.094405</a>
</li>
<li> A.Yu. Galkin, B.A. Ivanov, and C.E. Zaspel, Phys. Rev. B 74, 144419 (2006).
&nbsp;<a href="https://doi.org/10.1103/PhysRevB.74.144419">https://doi.org/10.1103/PhysRevB.74.144419</a>
</li>
<li> A.G. Gurevich and G.A. Melkov, Magnetization Oscillations and Waves (CRC Press, Boca Raton, 1996).
</li>
<li> K.Yu. Guslienko and A.N. Slavin, J. Magn. Magn. Matter. 323, 2418 (2011).
&nbsp;<a href="https://doi.org/10.1016/j.jmmm.2011.05.020">https://doi.org/10.1016/j.jmmm.2011.05.020</a>
</li>
<li> K.Yu. Guslienko, Appl. Phys. Lett. 75, 394 (1999).
&nbsp;<a href="https://doi.org/10.1063/1.124386">https://doi.org/10.1063/1.124386</a>
</li>
<li> J.E.L. Bishop, A.Yu. Galkin, and B.A. Ivanov, Phys. Rev. B 65, 174403 (2002).
&nbsp;<a href="https://doi.org/10.1103/PhysRevB.65.174403">https://doi.org/10.1103/PhysRevB.65.174403</a>
</li>
<li> L.D. Landau and E.M. Lifshitz, Quantum Mechanics. Non-Relativistic Theory (Pergamon Press, New York, 1977).
</li>
<li> M. Beleggia and M. De Graef, J. Magn. Magn. Mater. 278, 270 (2004).
&nbsp;<a href="https://doi.org/10.1016/j.jmmm.2003.12.1314">https://doi.org/10.1016/j.jmmm.2003.12.1314</a>
</li>
<li> N.W. Ashcroft and N.D. Mermin, Solid State Physics (Saunders College, Philadelphia, PA, 1976).
</li>
<li> B.A. Kalinikos and A.N. Slavin, J. Phys. C 19, 7013 (1986).
</li>
<li> C. Bayer, J. Jorzick, B. Hillebrands, S.O. Demokritov, R. Kouba, R. Bozinoski, A.N. Slavin, K.Y. Guslienko, D.V. Berkov, N.L. Gorn, and M.P. Kostylev, Phys. Rev. B 72, 064427 (2005).
&nbsp;<a href="https://doi.org/10.1103/PhysRevB.72.064427">https://doi.org/10.1103/PhysRevB.72.064427</a>
</li>
<li> M. Bailleul, R. Hollinger, and C. Fermon, Phys. Rev. B 73, 104424 (2006).
&nbsp;<a href="https://doi.org/10.1103/PhysRevB.73.104424">https://doi.org/10.1103/PhysRevB.73.104424</a>
</li>

</ol>

Published

2018-10-10

How to Cite

Verba, R. V. (2018). Spin Waves in Arrays of Magnetic Nanodots with Magnetodipolar Coupling. Ukrainian Journal of Physics, 58(8), 758. https://doi.org/10.15407/ujpe58.08.0758

Issue

Section

Solid matter

Most read articles by the same author(s)