Saturation of Magnetic Films with Spin-Polarized Current in the Presence of a Magnetic Field

Authors

  • O. M. Volkov Taras Shevchenko National University of Kyiv
  • V. P. Kravchuk Bogolyubov Institute for Theoretical Physics, Nat. Acad. of Sci. of Ukraine

DOI:

https://doi.org/10.15407/ujpe58.07.0666

Keywords:

spin-polarized current, magnetic films, magnetic field

Abstract

The influence of a perpendicular magnetic field on the process of transversal saturation of ferromagnetic films with spin-polarized current is studied theoretically. It is shown that the saturation current Js is decreased (increased) in the case of the codirected (oppositely directed) magnetic field and the current. There exists a critical current Jc > Js; which provides a “rigid” saturation – the saturated state is stable with respect to the transverse magnetic field of any amplitude and direction. The influence of a magnetic field on the vortex-antivortex crystals, which appear in a pre-saturated regime, is studied numerically. All analytical results are verified using micromagnetic simulations.

References

<ol>

<li> J. Lindner, Superlattices and Microstructures 47, 497 (2010).
&nbsp;<a href="https://doi.org/10.1016/j.spmi.2010.01.005">https://doi.org/10.1016/j.spmi.2010.01.005</a>
</li>
<li> S. Bohlens, B. Kr¨uger, A. Drews, M. Bolte, G. Meier, and D. Pfannkuche, Appl. Phys. Lett. 93, 142508 (pages 3) (2008).
</li>
<li> A. Drews, B. Kruger, G. Meier, S. Bohlens, L. Bocklage, T. Matsuyama, and M. Bolte, Applied Physics Letters 94, 062504 (pages 3) (2009).
</li>
<li> A.D. Kent, B. Ozyilmaz, and E. del Barco, Appl. Phys. Lett. 84, 3897 (2004).
&nbsp;<a href="https://doi.org/10.1063/1.1739271">https://doi.org/10.1063/1.1739271</a>
</li>
<li> J. C. Slonczewski, J. Magn. Magn. Mater. 159, L1 (1996).
&nbsp;<a href="https://doi.org/10.1016/0304-8853(96)00062-5">https://doi.org/10.1016/0304-8853(96)00062-5</a>
</li>
<li> L. Berger, Phys. Rev. B 54, 9353 (1996).
&nbsp;<a href="https://doi.org/10.1103/PhysRevB.54.9353">https://doi.org/10.1103/PhysRevB.54.9353</a>
</li>
<li> J.C. Slonczewski, J. Magn. Magn. Mater. 247, 324 (2002).
&nbsp;<a href="https://doi.org/10.1016/S0304-8853(02)00291-3">https://doi.org/10.1016/S0304-8853(02)00291-3</a>
</li>
<li> O.M. Volkov, V.P. Kravchuk, D.D. Sheka, and Y. Gaididei, Phys. Rev. B 84, 052404 (2011).
&nbsp;<a href="https://doi.org/10.1103/PhysRevB.84.052404">https://doi.org/10.1103/PhysRevB.84.052404</a>
</li>
<li> Y. Gaididei, O.M. Volkov, V.P. Kravchuk, and D. D. Sheka, Phys. Rev. B 86, 144401 (2012).
&nbsp;<a href="https://doi.org/10.1103/PhysRevB.86.144401">https://doi.org/10.1103/PhysRevB.86.144401</a>
</li>
<li> A. Dussaux, B. Georges, J. Grollier, V. Cros, A. Khvalkovskiy, A. Fukushima, M. Konoto, H. Kubota, K. Yakushiji, S. Yuasa, et al., Nat Commun 1, 1 (2010).
&nbsp;<a href="https://doi.org/10.1038/ncomms1006">https://doi.org/10.1038/ncomms1006</a>
</li>
<li> A. Dussaux, A. V. Khvalkovskiy, P. Bortolotti, J. Grollier, V. Cros, and A. Fert, Phys. Rev. B 86, 014402 (2012).
&nbsp;<a href="https://doi.org/10.1103/PhysRevB.86.014402">https://doi.org/10.1103/PhysRevB.86.014402</a>
</li>
<li> V. Sluka, A. K’akay, A.M. Deac, D.E. B¨urgler, R. Hertel, and C.M. Schneider, Journal of Physics D: Applied Physics 44, 384002 (2011).
&nbsp;<a href="https://doi.org/10.1088/0022-3727/44/38/384002">https://doi.org/10.1088/0022-3727/44/38/384002</a>
</li>
<li> A.I. Akhiezer, V.G. Bar'yakhtar, and S.V. Peletminski˘ı, Spin Waves (North-Holland, Amsterdam, 1968).
</li>
<li> The Object Oriented MicroMagnetic Framework, developed by M. J. Donahue and D. Porter mainly, from NIST. We used the 3D version of the 1.2α4 release, URL - <a href="http://math.nist.gov/oommf/">http://math.nist.gov/oommf/</a>
</li>

</ol>

Downloads

Published

2018-10-10

How to Cite

Volkov, O. M., & Kravchuk, V. P. (2018). Saturation of Magnetic Films with Spin-Polarized Current in the Presence of a Magnetic Field. Ukrainian Journal of Physics, 58(7), 666. https://doi.org/10.15407/ujpe58.07.0666

Issue

Section

Nanosystems