Moving Excitations in Cation Lattices

Authors

  • J. F. R. Archilla Grupo de F´ısica No Lineal. Universidad de Sevilla. Departamento de F´ısica, Aplicada I. ETSI Inform´atica
  • Y. A. Kosevich Semenov Institute of Chemical Physics, Russian Academy of Sciences
  • N. Jimenez Instituto de Investigaci´on para la Gesti´on, Integrada de las Zonas Costeras, Universidad Polit´ecnica de Valencia
  • V. J. S´anchez-Morcillo Instituto de Investigaci´on para la Gesti´on, Integrada de las Zonas Costeras, Universidad Polit´ecnica de Valencia
  • L. M. Garc´ia-Raffi Instituto de Universitario Matem´atica Pura y Aplicada, Universidad Polit´ecnica de Valencia

DOI:

https://doi.org/10.15407/ujpe58.07.0646

Keywords:

excitations, quodons, cation lattices, Coulomb interaction

Abstract

We consider a model made out of identical particles that repel each other with the Coulomb interaction. We study numerically and analytically the existence and properties of supersonic kinks, showing that they are very easy to be produced and propagate long distances. They have a wide range of velocities and energies. We are motivated by a special characteristic of the muscovite mica mineral. Tracks from particles such as muons can be distinguished in a complex decoration, but the only explanation to most of the tracks is localized excitations called quodons. They move in the cation lattice, sandwiched between the silicate layers, along the lattice directions. Quodons have also been observed experimentally [EPL 78 (2007) 1005].

References

<ol>

<li> D.A. Young, Nature 182, 375 (1958).
&nbsp;<a href="https://doi.org/10.1038/182375a0">https://doi.org/10.1038/182375a0</a>
</li>
<li> E.C.H. Silk and R.S. Barnes, Philos. Mag. 4, 970 (1959).
&nbsp;<a href="https://doi.org/10.1080/14786435908238273">https://doi.org/10.1080/14786435908238273</a>
</li>
<li> P.B. Price and R.M. Walker, Nature 196, 732 (1962).
&nbsp;<a href="https://doi.org/10.1038/196732a0">https://doi.org/10.1038/196732a0</a>
</li>
<li> M. Maurette, P. Pellas, and R.M. Walker, Nature 204, 821 (1964).
&nbsp;<a href="https://doi.org/10.1038/204821a0">https://doi.org/10.1038/204821a0</a>
</li>
<li> H.J. Rose and G.A. Jones, Nature 307, 245 (1984).
&nbsp;<a href="https://doi.org/10.1038/307245a0">https://doi.org/10.1038/307245a0</a>
</li>
<li> V.P. Perelygin, Yu.V. Bondar, W. Ensinger, R.L. Fleischer, P. Vater, and S.G. Stetsenko, Nucl. Phys. A, 723, 410 (2003).
&nbsp;<a href="https://doi.org/10.1016/S0375-9474(03)00816-9">https://doi.org/10.1016/S0375-9474(03)00816-9</a>
</li>
<li> S.A. Durrani, Rad. Meas. 34, 5 (2001).
&nbsp;<a href="https://doi.org/10.1016/S1350-4487(01)00112-3">https://doi.org/10.1016/S1350-4487(01)00112-3</a>
</li>
<li> S.A. Durrani, Rad. Meas. 43, S26 (2008).
&nbsp;<a href="https://doi.org/10.1016/j.radmeas.2008.03.044">https://doi.org/10.1016/j.radmeas.2008.03.044</a>
</li>
<li> L.A. P’erez-Maqueda, F. Franco, M.A. Avil’es, J. Poyato, and J.L. P’erez-Maqueda, Clays and Clay Miner. 51, 701 (2003).
&nbsp;<a href="https://doi.org/10.1346/CMN.203.0510613">https://doi.org/10.1346/CMN.203.0510613</a>
</li>
<li> F.M. Russell, Phys. Lett. B 25, 298 (1967).
&nbsp;<a href="https://doi.org/10.1016/0370-2693(67)90021-4">https://doi.org/10.1016/0370-2693(67)90021-4</a>
</li>
<li> F.M. Russell, Nature 216, 907 (1967).
&nbsp;<a href="https://doi.org/10.1038/216907a0">https://doi.org/10.1038/216907a0</a>
</li>
<li> F.M. Russell, Nature 217, 51 (1967).
&nbsp;<a href="https://doi.org/10.1038/217051a0">https://doi.org/10.1038/217051a0</a>
</li>
<li> F.M. Russell, Phys. Lett. A 130, 489 (1988).
&nbsp;<a href="https://doi.org/10.1016/0375-9601(88)90714-1">https://doi.org/10.1016/0375-9601(88)90714-1</a>
</li>
<li> F. Russell, Nucl. Tracks. Rad. Meas. 15, 41 (1988).
&nbsp;<a href="https://doi.org/10.1016/1359-0189(88)90098-2">https://doi.org/10.1016/1359-0189(88)90098-2</a>
</li>
<li> A.M. Kosevich and A.S. Kovalev, Sov. Phys. JETP 67, 1793 (1974).
</li>
<li> A.J. Sievers and S. Takeno, Phys. Rev. Lett. 61, 970 (1988).
&nbsp;<a href="https://doi.org/10.1103/PhysRevLett.61.970">https://doi.org/10.1103/PhysRevLett.61.970</a>
</li>
<li> K. Kroneberger, M. Schosnig, F.M. Russell, and K.O. Groeneveld, Rad. Meas. 23, 209 (1994).
&nbsp;<a href="https://doi.org/10.1016/1350-4487(94)90037-X">https://doi.org/10.1016/1350-4487(94)90037-X</a>
</li>
<li> F.M. Russell and J.C. Eilbeck, Europhys. Lett. 78, 10004 (2007).
&nbsp;<a href="https://doi.org/10.1209/0295-5075/78/10004">https://doi.org/10.1209/0295-5075/78/10004</a>
</li>
<li> J.F.R. Archilla, J. Cuevas, M.D. Alba, M. Naranjo, and J.M. Trillo, J. Phys. Chem. B 110(47), 24112 (2006).
&nbsp;<a href="https://doi.org/10.1021/jp0631228">https://doi.org/10.1021/jp0631228</a>
</li>
<li> J.F.R Archilla, J. Cuevas, and F. R. Romero, AIP Conf. Proc. 982(1), 788 (2008).
&nbsp;<a href="https://doi.org/10.1063/1.2897904">https://doi.org/10.1063/1.2897904</a>
</li>
<li> V.I. Dubinko, P.A. Selyshchev, and J.F.R. Archilla, Phys. Rev. E 83, 041124 (2011).
&nbsp;<a href="https://doi.org/10.1103/PhysRevE.83.041124">https://doi.org/10.1103/PhysRevE.83.041124</a>
</li>
<li> Yu.A. Kosevich, R. Khomeriki, and S. Ruffo, Europhys. Lett. 66, 21 (2004).
&nbsp;<a href="https://doi.org/10.1209/epl/i2003-10156-5">https://doi.org/10.1209/epl/i2003-10156-5</a>
</li>
<li> G. Brudeylins and D. Schmicker, Surf. Sci. 333, 237 (1995).
&nbsp;<a href="https://doi.org/10.1016/0039-6028(95)00096-8">https://doi.org/10.1016/0039-6028(95)00096-8</a>
</li>
<li> D.R. Collins, W.G. Stirling, C.R.A. Catlow, and G. Rowbotham, Phys. Chem. Miner. 19, 520 (1993).
&nbsp;<a href="https://doi.org/10.1007/BF00203052">https://doi.org/10.1007/BF00203052</a>
</li>
<li> N. Wada and W.A. Kamitakahara, Phys. Rev. B 43, 2391 (1991).
&nbsp;<a href="https://doi.org/10.1103/PhysRevB.43.2391">https://doi.org/10.1103/PhysRevB.43.2391</a>
</li>
<li> S.L. Chaplot and et al. Eur. J. Min. 14, 291 (2002).
&nbsp;<a href="https://doi.org/10.1127/0935-1221/2002/0014-0291">https://doi.org/10.1127/0935-1221/2002/0014-0291</a>
</li>
<li> Yu.A. Kosevich, Phys. Rev. Lett. 71, 2058 (1993).
&nbsp;<a href="https://doi.org/10.1103/PhysRevLett.71.2058">https://doi.org/10.1103/PhysRevLett.71.2058</a>
</li>
<li> B. S’anchez-Rey, G. James, J. Cuevas, and J.F.R. Archilla, Phys. Rev. B 70, 014301 (2004).
&nbsp;<a href="https://doi.org/10.1103/PhysRevB.70.014301">https://doi.org/10.1103/PhysRevB.70.014301</a>
</li>
<li> J.B. Page, Phys. Rev. B 41, 7835 (1990).
&nbsp;<a href="https://doi.org/10.1103/PhysRevB.41.7835">https://doi.org/10.1103/PhysRevB.41.7835</a>
</li>
<li> C. Brunhuber, F.G. Mertens, and Y. Gaididei, Eur. Phys. J. B 57, 57 (2007).
&nbsp;<a href="https://doi.org/10.1140/epjb/e2007-00150-3">https://doi.org/10.1140/epjb/e2007-00150-3</a>
</li>
<li> C. Brunhuber, F.G. Mertens, and Y.B. Gaididei, Phys. Rev. E 75, 036615 (2007).
&nbsp;<a href="https://doi.org/10.1103/PhysRevE.75.036615">https://doi.org/10.1103/PhysRevE.75.036615</a>
</li>

</ol>

Downloads

Published

2018-10-10

How to Cite

Archilla, J. F. R., Kosevich, Y. A., Jimenez, N., S´anchez-Morcillo, V. J., & Garc´ia-Raffi, L. M. (2018). Moving Excitations in Cation Lattices. Ukrainian Journal of Physics, 58(7), 646. https://doi.org/10.15407/ujpe58.07.0646

Issue

Section

Solid matter