Moving Excitations in Cation Lattices

  • J. F. R. Archilla Grupo de F´ısica No Lineal. Universidad de Sevilla. Departamento de F´ısica, Aplicada I. ETSI Inform´atica
  • Y. A. Kosevich Semenov Institute of Chemical Physics, Russian Academy of Sciences
  • N. Jimenez Instituto de Investigaci´on para la Gesti´on, Integrada de las Zonas Costeras, Universidad Polit´ecnica de Valencia
  • V. J. S´anchez-Morcillo Instituto de Investigaci´on para la Gesti´on, Integrada de las Zonas Costeras, Universidad Polit´ecnica de Valencia
  • L. M. Garc´ia-Raffi Instituto de Universitario Matem´atica Pura y Aplicada, Universidad Polit´ecnica de Valencia
Keywords: excitations, quodons, cation lattices, Coulomb interaction

Abstract

We consider a model made out of identical particles that repel each other with the Coulomb interaction. We study numerically and analytically the existence and properties of supersonic kinks, showing that they are very easy to be produced and propagate long distances. They have a wide range of velocities and energies. We are motivated by a special characteristic of the muscovite mica mineral. Tracks from particles such as muons can be distinguished in a complex decoration, but the only explanation to most of the tracks is localized excitations called quodons. They move in the cation lattice, sandwiched between the silicate layers, along the lattice directions. Quodons have also been observed experimentally [EPL 78 (2007) 1005].

References



  1. D.A. Young, Nature 182, 375 (1958).
     https://doi.org/10.1038/182375a0

  2. E.C.H. Silk and R.S. Barnes, Philos. Mag. 4, 970 (1959).
     https://doi.org/10.1080/14786435908238273

  3. P.B. Price and R.M. Walker, Nature 196, 732 (1962).
     https://doi.org/10.1038/196732a0

  4. M. Maurette, P. Pellas, and R.M. Walker, Nature 204, 821 (1964).
     https://doi.org/10.1038/204821a0

  5. H.J. Rose and G.A. Jones, Nature 307, 245 (1984).
     https://doi.org/10.1038/307245a0

  6. V.P. Perelygin, Yu.V. Bondar, W. Ensinger, R.L. Fleischer, P. Vater, and S.G. Stetsenko, Nucl. Phys. A, 723, 410 (2003).
     https://doi.org/10.1016/S0375-9474(03)00816-9

  7. S.A. Durrani, Rad. Meas. 34, 5 (2001).
     https://doi.org/10.1016/S1350-4487(01)00112-3

  8. S.A. Durrani, Rad. Meas. 43, S26 (2008).
     https://doi.org/10.1016/j.radmeas.2008.03.044

  9. L.A. P’erez-Maqueda, F. Franco, M.A. Avil’es, J. Poyato, and J.L. P’erez-Maqueda, Clays and Clay Miner. 51, 701 (2003).
     https://doi.org/10.1346/CMN.203.0510613

  10. F.M. Russell, Phys. Lett. B 25, 298 (1967).
     https://doi.org/10.1016/0370-2693(67)90021-4

  11. F.M. Russell, Nature 216, 907 (1967).
     https://doi.org/10.1038/216907a0

  12. F.M. Russell, Nature 217, 51 (1967).
     https://doi.org/10.1038/217051a0

  13. F.M. Russell, Phys. Lett. A 130, 489 (1988).
     https://doi.org/10.1016/0375-9601(88)90714-1

  14. F. Russell, Nucl. Tracks. Rad. Meas. 15, 41 (1988).
     https://doi.org/10.1016/1359-0189(88)90098-2

  15. A.M. Kosevich and A.S. Kovalev, Sov. Phys. JETP 67, 1793 (1974).

  16. A.J. Sievers and S. Takeno, Phys. Rev. Lett. 61, 970 (1988).
     https://doi.org/10.1103/PhysRevLett.61.970

  17. K. Kroneberger, M. Schosnig, F.M. Russell, and K.O. Groeneveld, Rad. Meas. 23, 209 (1994).
     https://doi.org/10.1016/1350-4487(94)90037-X

  18. F.M. Russell and J.C. Eilbeck, Europhys. Lett. 78, 10004 (2007).
     https://doi.org/10.1209/0295-5075/78/10004

  19. J.F.R. Archilla, J. Cuevas, M.D. Alba, M. Naranjo, and J.M. Trillo, J. Phys. Chem. B 110(47), 24112 (2006).
     https://doi.org/10.1021/jp0631228

  20. J.F.R Archilla, J. Cuevas, and F. R. Romero, AIP Conf. Proc. 982(1), 788 (2008).
     https://doi.org/10.1063/1.2897904

  21. V.I. Dubinko, P.A. Selyshchev, and J.F.R. Archilla, Phys. Rev. E 83, 041124 (2011).
     https://doi.org/10.1103/PhysRevE.83.041124

  22. Yu.A. Kosevich, R. Khomeriki, and S. Ruffo, Europhys. Lett. 66, 21 (2004).
     https://doi.org/10.1209/epl/i2003-10156-5

  23. G. Brudeylins and D. Schmicker, Surf. Sci. 333, 237 (1995).
     https://doi.org/10.1016/0039-6028(95)00096-8

  24. D.R. Collins, W.G. Stirling, C.R.A. Catlow, and G. Rowbotham, Phys. Chem. Miner. 19, 520 (1993).
     https://doi.org/10.1007/BF00203052

  25. N. Wada and W.A. Kamitakahara, Phys. Rev. B 43, 2391 (1991).
     https://doi.org/10.1103/PhysRevB.43.2391

  26. S.L. Chaplot and et al. Eur. J. Min. 14, 291 (2002).
     https://doi.org/10.1127/0935-1221/2002/0014-0291

  27. Yu.A. Kosevich, Phys. Rev. Lett. 71, 2058 (1993).
     https://doi.org/10.1103/PhysRevLett.71.2058

  28. B. S’anchez-Rey, G. James, J. Cuevas, and J.F.R. Archilla, Phys. Rev. B 70, 014301 (2004).
     https://doi.org/10.1103/PhysRevB.70.014301

  29. J.B. Page, Phys. Rev. B 41, 7835 (1990).
     https://doi.org/10.1103/PhysRevB.41.7835

  30. C. Brunhuber, F.G. Mertens, and Y. Gaididei, Eur. Phys. J. B 57, 57 (2007).
     https://doi.org/10.1140/epjb/e2007-00150-3

  31. C. Brunhuber, F.G. Mertens, and Y.B. Gaididei, Phys. Rev. E 75, 036615 (2007).
     https://doi.org/10.1103/PhysRevE.75.036615


Published
2018-10-10
How to Cite
Archilla, J. F., Kosevich, Y., Jimenez, N., S´anchez-MorcilloV., & Garc´ia-RaffiL. (2018). Moving Excitations in Cation Lattices. Ukrainian Journal of Physics, 58(7), 646. https://doi.org/10.15407/ujpe58.07.0646
Section
Solid matter