Magnetic Susceptibilities of Dense Superfluid Neutron Matter with Generalized Skyrme Forces and Spin-Triplet Pairing at Zero Temperature
DOI:
https://doi.org/10.15407/ujpe58.07.0611Keywords:
dense superfluid neutron matter, Skyrme forces, spin-triplet pairingAbstract
Magnetic properties of a dense superfluid neutron matter (relevant to the physics of neutron star cores) at subnuclear and supranuclear densities (in the range 0.5 < n=n0 < 3.0, where n0 = 0.17 (fm^-3) is the saturation nuclear density) with the so-called generalized Skyrme effective forces BSk18, BSk19, BSk20, BSk21 (containing additional unconventional density-dependent terms) and with spin-triplet p-wave pairing (with spin S = 1 and orbital moment L = 1) in the presence of a strong magnetic field are studied within the framework of the non-relativistic generalized Fermi-liquid theory at zero temperature. The upper limit for the density range of a neutron matter is restricted by the magnitude 3n0 in order to avoid the account of relativistic corrections growing with density. The general formula obtained in [1] (valid for any parametrization of the Skyrme forces) for the magnetic susceptibility of a superfluid neutron matter at zero temperature is specified here for the new BSk18-BSk21 parametrizations of the Skyrme interaction. As is known, all previous conventional Skyrme interactions predict spin instabilities in a normal (nonsuperfluid) neutron matter beyond the saturation nuclear density. It is obtained in the present work that, for the model of superfluid neutron matter with new generalized BSk18-BSk21 parametrizations, such phase transition to the ferromagnetic state occurs neither at subnuclear nor at supranuclear densities. Thus, the high-density ferromagnetic instability is removed in the neutron matter with new generalized Skyrme forces BSk18-BSk21 not only in normal, but also in superfluid states with anisotropic spin-triplet pairing.
References
<li> A.N. Tarasov, Ukr. J. Phys. 55, 644 (2010).
</li>
<li> A.N. Tarasov, Centr. Eur. J. Phys. 9, 1057 (2011).
</li>
<li> E. Chabanat, P. Bonche, P. Haensel, J. Meyer, and R. Schaeffer, Nucl. Phys. A 627, 710 (1997).
<a href="https://doi.org/10.1016/S0375-9474(97)00596-4">https://doi.org/10.1016/S0375-9474(97)00596-4</a>
</li>
<li> J. Friedrich and P.-G. Reinhard, Phys. Rev. C 33, 335 (1986).
<a href="https://doi.org/10.1103/PhysRevC.33.335">https://doi.org/10.1103/PhysRevC.33.335</a>
</li>
<li> M. Rayet, M. Arnould, F. Tondeur, and G. Paulus, Astron. Astrophys. 116, 183 (1982).
</li>
<li> J.R. Stone, J.C. Miller, R. Koncewicz, P.D. Stevenson, and M.R. Strayer, Phys. Rev. C 68, 034324 (2003).
<a href="https://doi.org/10.1103/PhysRevC.68.034324">https://doi.org/10.1103/PhysRevC.68.034324</a>
</li>
<li> M. Dutra, O. Lourenco, J.S. Sa Martins, A. Delfino, J.R. Stone, and P.D. Stevenson, Phys. Rev. C 85, 035201 (2012).
<a href="https://doi.org/10.1103/PhysRevC.85.035201">https://doi.org/10.1103/PhysRevC.85.035201</a>
</li>
<li> T. Takatsuka and R. Tamagaki, Prog. Theor. Phys. Suppl. 112, 27 (1993).
<a href="https://doi.org/10.1143/PTPS.112.27">https://doi.org/10.1143/PTPS.112.27</a>
</li>
<li> A.J. Leggett, Rev. Mod. Phys. 47, 331 (1975).
<a href="https://doi.org/10.1103/RevModPhys.47.331">https://doi.org/10.1103/RevModPhys.47.331</a>
</li>
<li> D. Vollhardt and P. Wolfle, The Superfluid Phases of Helium 3 (Taylor and Francis, London, 1990).
</li>
<li> AIP Conf. Proc. 983 (2008), 40 Years of Pulsars: Millisecond Pulsars, Magnetars and More, edited by C. Bassa, Z. Wang, A, Cumming, V.M. Kaspi (McGill Univ., Montreal, 2008).
</li>
<li> R.C. Duncan and Ch. Thompson, Astrophys. J. 392, L9 (1992).
<a href="https://doi.org/10.1086/186413">https://doi.org/10.1086/186413</a>
</li>
<li> Ch. Thompson and R.C. Duncan, Astrophys. J. 408, 194 (1993).
<a href="https://doi.org/10.1086/172580">https://doi.org/10.1086/172580</a>
</li>
<li> C. Kouveliotou et al., Nature 393, 235 (1998).
<a href="https://doi.org/10.1038/30410">https://doi.org/10.1038/30410</a>
</li>
<li> S.L. Shapiro and S.A. Teukolsky, Black Holes, White Dwarfs, and Neutron Stars: The Physics of Compact Objects (Wiley, New York, 1983).
<a href="https://doi.org/10.1002/9783527617661">https://doi.org/10.1002/9783527617661</a>
</li>
<li> P. Haensel, A.Y. Potekhin, and D.G. Yakovlev, Neutron Stars 1, Equation of State and Structure (Springer, New York, 2007).
</li>
<li> D.G. Yakovlev, K.P. Levenfish, and Yu.A. Shibanov, Uspekhi Fiz. Nauk, 169, 825 (1999).
<a href="https://doi.org/10.3367/UFNr.0169.199908a.0825">https://doi.org/10.3367/UFNr.0169.199908a.0825</a>
</li>
<li> U. Lombardo and H.-J. Schulze, in Physics of Neutron Stars Interiors, edited by D. Blaschke et al. (Springer, New York, 2001), p. 30.
<a href="https://doi.org/10.1007/3-540-44578-1_2">https://doi.org/10.1007/3-540-44578-1_2</a>
</li>
<li> A.N. Tarasov, J. Phys.: Conf. Ser. 400, 032101 (2012).
<a href="https://doi.org/10.1088/1742-6596/400/3/032101">https://doi.org/10.1088/1742-6596/400/3/032101</a>
</li>
<li> N. Chamel, S. Goriely, and J.M. Pearson, Phys. Rev. C 80, 065804 (2009).
<a href="https://doi.org/10.1103/PhysRevC.80.065804">https://doi.org/10.1103/PhysRevC.80.065804</a>
</li>
<li> N. Chamel, S. Goriely, and J.M. Pearson, Phys. Rev. C 82, 035804 (2010).
<a href="https://doi.org/10.1103/PhysRevC.82.035804">https://doi.org/10.1103/PhysRevC.82.035804</a>
</li>
<li> A.I. Akhiezer, V.V. Krasil'nikov, S.V. Peletminskii, and A.A. Yatsenko, Phys. Rep. 245, 1 (1994).
<a href="https://doi.org/10.1016/0370-1573(94)90060-4">https://doi.org/10.1016/0370-1573(94)90060-4</a>
</li>
<li> A. Vidaurre, J. Navarro, and J. Bernabeu, Astron. Astrophys. 135, 361 (1984).
</li>
<li> M. Kutschera and W. Wojcik, Phys. Lett. B 325, 271 (1994).
<a href="https://doi.org/10.1016/0370-2693(94)90009-4">https://doi.org/10.1016/0370-2693(94)90009-4</a>
</li>
<li> J. Margueron, J. Navarro, and N.V. Giai, Phys. Rev. C 66, 014303 (2002).
<a href="https://doi.org/10.1103/PhysRevC.66.014303">https://doi.org/10.1103/PhysRevC.66.014303</a>
</li>
<li> S. Fantoni, A. Sarsa, and K.E. Schmidt, Phys. Rev. Lett. 87, 181101 (2001).
<a href="https://doi.org/10.1103/PhysRevLett.87.181101">https://doi.org/10.1103/PhysRevLett.87.181101</a>
</li>
<li> I. Vidana, A. Polls, and A. Ramos, Phys. Rev. C 65, 035804 (2002).
<a href="https://doi.org/10.1103/PhysRevC.65.035804">https://doi.org/10.1103/PhysRevC.65.035804</a>
</li>
<li> I. Vidana and I. Bombaci, Phys. Rev. C 66, 045801 (2002).
<a href="https://doi.org/10.1103/PhysRevC.66.045801">https://doi.org/10.1103/PhysRevC.66.045801</a>
</li>
<li> A. Rios, A. Polls, and I. Vidana, Phys. Rev. C 71, 055802 (2005).
<a href="https://doi.org/10.1103/PhysRevC.71.055802">https://doi.org/10.1103/PhysRevC.71.055802</a>
</li>
<li> I. Bombaci, A. Polls, A. Ramos, A. Rios, and I. Vidana, Phys. Lett. B 632, 638 (2006).
<a href="https://doi.org/10.1016/j.physletb.2005.08.136">https://doi.org/10.1016/j.physletb.2005.08.136</a>
</li>
<li> M.A. Perez-Garcia, Phys. Rev. C 77, 065806 (2008).
<a href="https://doi.org/10.1103/PhysRevC.77.065806">https://doi.org/10.1103/PhysRevC.77.065806</a>
</li>
<li> M.A. Perez-Garcia, J. Navarro, and A. Polls, Phys. Rev. C 80, 025802 (2009).
<a href="https://doi.org/10.1103/PhysRevC.80.025802">https://doi.org/10.1103/PhysRevC.80.025802</a>
</li>
<li> A.A. Isayev and J. Yang, Phys. Rev. C 80, 065801 (2009).
<a href="https://doi.org/10.1103/PhysRevC.80.065801">https://doi.org/10.1103/PhysRevC.80.065801</a>
</li>
<li> S. Goriely, N. Chamel, and J.M. Pearson, Phys. Rev. Lett. 102, 152503 (2009).
<a href="https://doi.org/10.1103/PhysRevLett.102.152503">https://doi.org/10.1103/PhysRevLett.102.152503</a>
</li>
<li>A.N. Tarasov, Low Temp. Phys. 24, 324 (1998); 26, 785 (2000).
</li>
<li> A.N. Tarasov, J. Probl. Atom. Sci. Techn. No. 6(2), 356 (2001).
</li>
<li>V.P. Mineev, Uspekhi Fiz. Nauk 139, 303 (1983).
<a href="https://doi.org/10.3367/UFNr.0139.198302d.0303">https://doi.org/10.3367/UFNr.0139.198302d.0303</a>
</li>
<li> T. Tatsumi and K. Sato, Phys. Lett. B 663, 322 (2008).
<a href="https://doi.org/10.1016/j.physletb.2008.04.031">https://doi.org/10.1016/j.physletb.2008.04.031</a>
</li>
<li> G.E. Brown, C.-H. Lee, and M. Rho, Phys. Rep. 462, 1 (2008).
<a href="https://doi.org/10.1016/j.physrep.2008.03.002">https://doi.org/10.1016/j.physrep.2008.03.002</a>
</li>
<li> M.G. Alford, A. Schmitt, K. Rajagopal, and T. Sch¨afer, Rev. Mod. Phys. 80, 1455 (2008).
<a href="https://doi.org/10.1103/RevModPhys.80.1455">https://doi.org/10.1103/RevModPhys.80.1455</a>
</li>
<li> K. Sato and T. Tatsumi, Nucl. Phys. A 826, 74 (2009). V.P. Neznamov and A.J. Silenko, J. Math. Phys. 50, 122302 (2009).
</li>
</ol>
Downloads
Published
How to Cite
Issue
Section
License
Copyright Agreement
License to Publish the Paper
Kyiv, Ukraine
The corresponding author and the co-authors (hereon referred to as the Author(s)) of the paper being submitted to the Ukrainian Journal of Physics (hereon referred to as the Paper) from one side and the Bogolyubov Institute for Theoretical Physics, National Academy of Sciences of Ukraine, represented by its Director (hereon referred to as the Publisher) from the other side have come to the following Agreement:
1. Subject of the Agreement.
The Author(s) grant(s) the Publisher the free non-exclusive right to use the Paper (of scientific, technical, or any other content) according to the terms and conditions defined by this Agreement.
2. The ways of using the Paper.
2.1. The Author(s) grant(s) the Publisher the right to use the Paper as follows.
2.1.1. To publish the Paper in the Ukrainian Journal of Physics (hereon referred to as the Journal) in original language and translated into English (the copy of the Paper approved by the Author(s) and the Publisher and accepted for publication is a constitutive part of this License Agreement).
2.1.2. To edit, adapt, and correct the Paper by approval of the Author(s).
2.1.3. To translate the Paper in the case when the Paper is written in a language different from that adopted in the Journal.
2.2. If the Author(s) has(ve) an intent to use the Paper in any other way, e.g., to publish the translated version of the Paper (except for the case defined by Section 2.1.3 of this Agreement), to post the full Paper or any its part on the web, to publish the Paper in any other editions, to include the Paper or any its part in other collections, anthologies, encyclopaedias, etc., the Author(s) should get a written permission from the Publisher.
3. License territory.
The Author(s) grant(s) the Publisher the right to use the Paper as regulated by sections 2.1.1–2.1.3 of this Agreement on the territory of Ukraine and to distribute the Paper as indispensable part of the Journal on the territory of Ukraine and other countries by means of subscription, sales, and free transfer to a third party.
4. Duration.
4.1. This Agreement is valid starting from the date of signature and acts for the entire period of the existence of the Journal.
5. Loyalty.
5.1. The Author(s) warrant(s) the Publisher that:
– he/she is the true author (co-author) of the Paper;
– copyright on the Paper was not transferred to any other party;
– the Paper has never been published before and will not be published in any other media before it is published by the Publisher (see also section 2.2);
– the Author(s) do(es) not violate any intellectual property right of other parties. If the Paper includes some materials of other parties, except for citations whose length is regulated by the scientific, informational, or critical character of the Paper, the use of such materials is in compliance with the regulations of the international law and the law of Ukraine.
6. Requisites and signatures of the Parties.
Publisher: Bogolyubov Institute for Theoretical Physics, National Academy of Sciences of Ukraine.
Address: Ukraine, Kyiv, Metrolohichna Str. 14-b.
Author: Electronic signature on behalf and with endorsement of all co-authors.