Magnetic Susceptibilities of Dense Superfluid Neutron Matter with Generalized Skyrme Forces and Spin-Triplet Pairing at Zero Temperature

Authors

  • A. N. Tarasov Akhiezer Institute for Theoretical Physics, National Science Center “Kharkiv Institute of Physics and Technology”, Nat. Acad. of Sci. of Ukraine

DOI:

https://doi.org/10.15407/ujpe58.07.0611

Keywords:

dense superfluid neutron matter, Skyrme forces, spin-triplet pairing

Abstract

Magnetic properties of a dense superfluid neutron matter (relevant to the physics of neutron star cores) at subnuclear and supranuclear densities (in the range 0.5 < n=n0 < 3.0, where n0 = 0.17 (fm^-3) is the saturation nuclear density) with the so-called generalized Skyrme effective forces BSk18, BSk19, BSk20, BSk21 (containing additional unconventional density-dependent terms) and with spin-triplet p-wave pairing (with spin S = 1 and orbital moment L = 1) in the presence of a strong magnetic field are studied within the framework of the non-relativistic generalized Fermi-liquid theory at zero temperature. The upper limit for the density range of a neutron matter is restricted by the magnitude 3n0 in order to avoid the account of relativistic corrections growing with density. The general formula obtained in [1] (valid for any parametrization of the Skyrme forces) for the magnetic susceptibility of a superfluid neutron matter at zero temperature is specified here for the new BSk18-BSk21 parametrizations of the Skyrme interaction. As is known, all previous conventional Skyrme interactions predict spin instabilities in a normal (nonsuperfluid) neutron matter beyond the saturation nuclear density. It is obtained in the present work that, for the model of superfluid neutron matter with new generalized BSk18-BSk21 parametrizations, such phase transition to the ferromagnetic state occurs neither at subnuclear nor at supranuclear densities. Thus, the high-density ferromagnetic instability is removed in the neutron matter with new generalized Skyrme forces BSk18-BSk21 not only in normal, but also in superfluid states with anisotropic spin-triplet pairing.

References

<ol>

<li> A.N. Tarasov, Ukr. J. Phys. 55, 644 (2010).
</li>
<li> A.N. Tarasov, Centr. Eur. J. Phys. 9, 1057 (2011).
</li>
<li> E. Chabanat, P. Bonche, P. Haensel, J. Meyer, and R. Schaeffer, Nucl. Phys. A 627, 710 (1997).
&nbsp;<a href="https://doi.org/10.1016/S0375-9474(97)00596-4">https://doi.org/10.1016/S0375-9474(97)00596-4</a>
</li>
<li> J. Friedrich and P.-G. Reinhard, Phys. Rev. C 33, 335 (1986).
&nbsp;<a href="https://doi.org/10.1103/PhysRevC.33.335">https://doi.org/10.1103/PhysRevC.33.335</a>
</li>
<li> M. Rayet, M. Arnould, F. Tondeur, and G. Paulus, Astron. Astrophys. 116, 183 (1982).
</li>
<li> J.R. Stone, J.C. Miller, R. Koncewicz, P.D. Stevenson, and M.R. Strayer, Phys. Rev. C 68, 034324 (2003).
&nbsp;<a href="https://doi.org/10.1103/PhysRevC.68.034324">https://doi.org/10.1103/PhysRevC.68.034324</a>
</li>
<li> M. Dutra, O. Lourenco, J.S. Sa Martins, A. Delfino, J.R. Stone, and P.D. Stevenson, Phys. Rev. C 85, 035201 (2012).
&nbsp;<a href="https://doi.org/10.1103/PhysRevC.85.035201">https://doi.org/10.1103/PhysRevC.85.035201</a>
</li>
<li> T. Takatsuka and R. Tamagaki, Prog. Theor. Phys. Suppl. 112, 27 (1993).
&nbsp;<a href="https://doi.org/10.1143/PTPS.112.27">https://doi.org/10.1143/PTPS.112.27</a>
</li>
<li> A.J. Leggett, Rev. Mod. Phys. 47, 331 (1975).
&nbsp;<a href="https://doi.org/10.1103/RevModPhys.47.331">https://doi.org/10.1103/RevModPhys.47.331</a>
</li>
<li> D. Vollhardt and P. Wolfle, The Superfluid Phases of Helium 3 (Taylor and Francis, London, 1990).
</li>
<li> AIP Conf. Proc. 983 (2008), 40 Years of Pulsars: Millisecond Pulsars, Magnetars and More, edited by C. Bassa, Z. Wang, A, Cumming, V.M. Kaspi (McGill Univ., Montreal, 2008).
</li>
<li> R.C. Duncan and Ch. Thompson, Astrophys. J. 392, L9 (1992).
&nbsp;<a href="https://doi.org/10.1086/186413">https://doi.org/10.1086/186413</a>
</li>
<li> Ch. Thompson and R.C. Duncan, Astrophys. J. 408, 194 (1993).
&nbsp;<a href="https://doi.org/10.1086/172580">https://doi.org/10.1086/172580</a>
</li>
<li> C. Kouveliotou et al., Nature 393, 235 (1998).
&nbsp;<a href="https://doi.org/10.1038/30410">https://doi.org/10.1038/30410</a>
</li>
<li> S.L. Shapiro and S.A. Teukolsky, Black Holes, White Dwarfs, and Neutron Stars: The Physics of Compact Objects (Wiley, New York, 1983).
&nbsp;<a href="https://doi.org/10.1002/9783527617661">https://doi.org/10.1002/9783527617661</a>
</li>
<li> P. Haensel, A.Y. Potekhin, and D.G. Yakovlev, Neutron Stars 1, Equation of State and Structure (Springer, New York, 2007).
</li>
<li> D.G. Yakovlev, K.P. Levenfish, and Yu.A. Shibanov, Uspekhi Fiz. Nauk, 169, 825 (1999).
&nbsp;<a href="https://doi.org/10.3367/UFNr.0169.199908a.0825">https://doi.org/10.3367/UFNr.0169.199908a.0825</a>
</li>
<li> U. Lombardo and H.-J. Schulze, in Physics of Neutron Stars Interiors, edited by D. Blaschke et al. (Springer, New York, 2001), p. 30.
&nbsp;<a href="https://doi.org/10.1007/3-540-44578-1_2">https://doi.org/10.1007/3-540-44578-1_2</a>
</li>
<li> A.N. Tarasov, J. Phys.: Conf. Ser. 400, 032101 (2012).
&nbsp;<a href="https://doi.org/10.1088/1742-6596/400/3/032101">https://doi.org/10.1088/1742-6596/400/3/032101</a>
</li>
<li> N. Chamel, S. Goriely, and J.M. Pearson, Phys. Rev. C 80, 065804 (2009).
&nbsp;<a href="https://doi.org/10.1103/PhysRevC.80.065804">https://doi.org/10.1103/PhysRevC.80.065804</a>
</li>
<li> N. Chamel, S. Goriely, and J.M. Pearson, Phys. Rev. C 82, 035804 (2010).
&nbsp;<a href="https://doi.org/10.1103/PhysRevC.82.035804">https://doi.org/10.1103/PhysRevC.82.035804</a>
</li>
<li> A.I. Akhiezer, V.V. Krasil'nikov, S.V. Peletminskii, and A.A. Yatsenko, Phys. Rep. 245, 1 (1994).
&nbsp;<a href="https://doi.org/10.1016/0370-1573(94)90060-4">https://doi.org/10.1016/0370-1573(94)90060-4</a>
</li>
<li> A. Vidaurre, J. Navarro, and J. Bernabeu, Astron. Astrophys. 135, 361 (1984).
</li>
<li> M. Kutschera and W. Wojcik, Phys. Lett. B 325, 271 (1994).
&nbsp;<a href="https://doi.org/10.1016/0370-2693(94)90009-4">https://doi.org/10.1016/0370-2693(94)90009-4</a>
</li>
<li> J. Margueron, J. Navarro, and N.V. Giai, Phys. Rev. C 66, 014303 (2002).
&nbsp;<a href="https://doi.org/10.1103/PhysRevC.66.014303">https://doi.org/10.1103/PhysRevC.66.014303</a>
</li>
<li> S. Fantoni, A. Sarsa, and K.E. Schmidt, Phys. Rev. Lett. 87, 181101 (2001).
&nbsp;<a href="https://doi.org/10.1103/PhysRevLett.87.181101">https://doi.org/10.1103/PhysRevLett.87.181101</a>
</li>
<li> I. Vidana, A. Polls, and A. Ramos, Phys. Rev. C 65, 035804 (2002).
&nbsp;<a href="https://doi.org/10.1103/PhysRevC.65.035804">https://doi.org/10.1103/PhysRevC.65.035804</a>
</li>
<li> I. Vidana and I. Bombaci, Phys. Rev. C 66, 045801 (2002).
&nbsp;<a href="https://doi.org/10.1103/PhysRevC.66.045801">https://doi.org/10.1103/PhysRevC.66.045801</a>
</li>
<li> A. Rios, A. Polls, and I. Vidana, Phys. Rev. C 71, 055802 (2005).
&nbsp;<a href="https://doi.org/10.1103/PhysRevC.71.055802">https://doi.org/10.1103/PhysRevC.71.055802</a>
</li>
<li> I. Bombaci, A. Polls, A. Ramos, A. Rios, and I. Vidana, Phys. Lett. B 632, 638 (2006).
&nbsp;<a href="https://doi.org/10.1016/j.physletb.2005.08.136">https://doi.org/10.1016/j.physletb.2005.08.136</a>
</li>
<li> M.A. Perez-Garcia, Phys. Rev. C 77, 065806 (2008).
&nbsp;<a href="https://doi.org/10.1103/PhysRevC.77.065806">https://doi.org/10.1103/PhysRevC.77.065806</a>
</li>
<li> M.A. Perez-Garcia, J. Navarro, and A. Polls, Phys. Rev. C 80, 025802 (2009).
&nbsp;<a href="https://doi.org/10.1103/PhysRevC.80.025802">https://doi.org/10.1103/PhysRevC.80.025802</a>
</li>
<li> A.A. Isayev and J. Yang, Phys. Rev. C 80, 065801 (2009).
&nbsp;<a href="https://doi.org/10.1103/PhysRevC.80.065801">https://doi.org/10.1103/PhysRevC.80.065801</a>
</li>
<li> S. Goriely, N. Chamel, and J.M. Pearson, Phys. Rev. Lett. 102, 152503 (2009).
&nbsp;<a href="https://doi.org/10.1103/PhysRevLett.102.152503">https://doi.org/10.1103/PhysRevLett.102.152503</a>
</li>
<li>A.N. Tarasov, Low Temp. Phys. 24, 324 (1998); 26, 785 (2000).
</li>
<li> A.N. Tarasov, J. Probl. Atom. Sci. Techn. No. 6(2), 356 (2001).
</li>
<li>V.P. Mineev, Uspekhi Fiz. Nauk 139, 303 (1983).
&nbsp;<a href="https://doi.org/10.3367/UFNr.0139.198302d.0303">https://doi.org/10.3367/UFNr.0139.198302d.0303</a>
</li>
<li> T. Tatsumi and K. Sato, Phys. Lett. B 663, 322 (2008).
&nbsp;<a href="https://doi.org/10.1016/j.physletb.2008.04.031">https://doi.org/10.1016/j.physletb.2008.04.031</a>
</li>
<li> G.E. Brown, C.-H. Lee, and M. Rho, Phys. Rep. 462, 1 (2008).
&nbsp;<a href="https://doi.org/10.1016/j.physrep.2008.03.002">https://doi.org/10.1016/j.physrep.2008.03.002</a>
</li>
<li> M.G. Alford, A. Schmitt, K. Rajagopal, and T. Sch¨afer, Rev. Mod. Phys. 80, 1455 (2008).
&nbsp;<a href="https://doi.org/10.1103/RevModPhys.80.1455">https://doi.org/10.1103/RevModPhys.80.1455</a>
</li>
<li> K. Sato and T. Tatsumi, Nucl. Phys. A 826, 74 (2009). V.P. Neznamov and A.J. Silenko, J. Math. Phys. 50, 122302 (2009).
</li>

</ol>

Downloads

Published

2018-10-10

How to Cite

Tarasov, A. N. (2018). Magnetic Susceptibilities of Dense Superfluid Neutron Matter with Generalized Skyrme Forces and Spin-Triplet Pairing at Zero Temperature. Ukrainian Journal of Physics, 58(7), 611. https://doi.org/10.15407/ujpe58.07.0611

Issue

Section

Fields and elementary particles