Mechanism of Fast Axially Symmetric Reversal of Magnetic Vortex Core

Authors

  • O. V. Pylypovskyi Taras Shevchenko National University of Kyiv
  • D. D. Sheka Taras Shevchenko National University of Kyiv
  • V. P. Kravchuk Bogolyubov Institute for Theoretical Physics, Nat. Acad. of Sci. of Ukraine
  • Yu. B. Gaididei Bogolyubov Institute for Theoretical Physics, Nat. Acad. of Sci. of Ukraine
  • F. G. Mertens Physics Institute, University of Bayreuth

DOI:

https://doi.org/10.15407/ujpe58.06.0596

Keywords:

magnetic vortex, nanodot, nanodisk, vortex random-access memories

Abstract

The magnetic vortex core in a nanodot can be switched by an alternating transversal magnetic field. We propose a simple collective coordinate model, which describes the comprehensive vortex core dynamics, including the resonant behavior, weakly nonlinear regimes, and reversal dynamics. A chaotic dynamics of the vortex polarity is predicted. All analytical results are confirmed by micromagnetic simulations.

References

<ol>

<li> H.-B. Braun, Adv. in Phys. 61, 1 (2012), http:// www.tandfonline.com/doi/abs/10.1080/00018732.2012. 663070</li>
<li> A. Wachowiak, J. Wiebe, M. Bode, O. Pietzsch, M. Morgenstern, and R. Wiesendanger, Science 298, 577 (2002), http://www.sciencemag.org/cgi/content/abstract/298/5593/577.&nbsp;<a href="https://doi.org/10.1126/science.1075302">https://doi.org/10.1126/science.1075302</a></li>
<li> A. Hubert and R. Sch¨afer, Magnetic Domains: the Analysis of Magnetic Microstructures (Springer, Berlin, 1998).</li>
<li> S.-K. Kim, K.-S. Lee, Y.-S. Yu, and Y.-S. Choi, Appl. Phys. Lett. 92, 022509 (2008).&nbsp;<a href="https://doi.org/10.1063/1.2807274">https://doi.org/10.1063/1.2807274</a></li>
<li> Y.-S. Yu, H. Jung, K.-S. Lee, P. Fischer, and S.-K. Kim, Appl. Phys. Lett. 98, 052507 (2011).&nbsp;<a href="https://doi.org/10.1063/1.3551524">https://doi.org/10.1063/1.3551524</a></li>
<li> Y.B. Gaididei, V.P. Kravchuk, D.D. Sheka, and F.G. Mertens, Low Temp. Phys. 34, 528 (2008).&nbsp;<a href="https://doi.org/10.1063/1.2957013">https://doi.org/10.1063/1.2957013</a></li>
<li> V.P. Kravchuk, Y. Gaididei, and D.D. Sheka, Phys. Rev. B 80, 100405 (2009).&nbsp;<a href="https://doi.org/10.1103/PhysRevB.80.100405">https://doi.org/10.1103/PhysRevB.80.100405</a></li>
<li> Y. Gaididei, V.P. Kravchuk, D.D. Sheka, and F.G. Mertens, Phys. Rev. B 81, 094431 (2010).&nbsp;<a href="https://doi.org/10.1103/PhysRevB.81.094431">https://doi.org/10.1103/PhysRevB.81.094431</a></li>
<li> T. Okuno, K. Shigeto, T. Ono, K. Mibu, and T. Shinjo, J. Magn. Magn. Mater. 240, 1 (2002).&nbsp;<a href="https://doi.org/10.1016/S0304-8853(01)00708-9">https://doi.org/10.1016/S0304-8853(01)00708-9</a></li>
<li> A. Thiaville, J.M. Garcia, R. Dittrich, J. Miltat, and T. Schrefl, Phys. Rev. B 67, 094410 (2003).&nbsp;<a href="https://doi.org/10.1103/PhysRevB.67.094410">https://doi.org/10.1103/PhysRevB.67.094410</a></li>
<li> V. Kravchuk and D. Sheka, Phys. of Sol. State 49, 1923 (2007).&nbsp;<a href="https://doi.org/10.1134/S1063783407100186">https://doi.org/10.1134/S1063783407100186</a></li>
<li> L. Vila, M. Darques, A. Encinas, U. Ebels, J.-M. George, G. Faini, A. Thiaville, and L. Piraux, Phys. Rev. B 79, 172410 (2009).&nbsp;<a href="https://doi.org/10.1103/PhysRevB.79.172410">https://doi.org/10.1103/PhysRevB.79.172410</a></li>
<li> R. Wang and X. Dong, Appl. Phys. Lett. 100, 082402 (2012).&nbsp;<a href="https://doi.org/10.1063/1.3687909">https://doi.org/10.1063/1.3687909</a></li>
<li> M.-W. Yoo, J. Lee, and S.-K. Kim, Appl. Phys. Lett. 100, 172413 (2012).&nbsp;<a href="https://doi.org/10.1063/1.4705690">https://doi.org/10.1063/1.4705690</a></li>
<li> M. Abramowitz and I.A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables (Dover, New York, 1964).</li>
<li> J. Kevorkian and J. Cole, Perturbation Methods in Applied Mathematics (Springer, Berlin, 1981).</li>
<li> A. Nayfeh, Problems in Perturbation (Wiley, New York, 1985).</li>
<li> A. Nayfeh, Perturbation Methods (Wiley, New York, 2008).</li>
<li> The Object Oriented MicroMagnetic Framework, note developed by M.J. Donahue and D. Porter mainly, from NIST. We used the 3D version of the 1.2α4 release, http://math.nist.gov/oommf/.</li>
<li> S. Petit-Watelot, J.-V. Kim, A. Ruotolo, R.M. Otxoa, K. Bouzehouane, J. Grollier, A. Vansteenkiste, B. Van de Wiele, V. Cros, and T. Devolder, Nat. Phys. 8, 682 (2012).</li>

</ol>

Downloads

Published

2018-10-10

How to Cite

Pylypovskyi, O. V., Sheka, D. D., Kravchuk, V. P., Gaididei, Y. B., & Mertens, F. G. (2018). Mechanism of Fast Axially Symmetric Reversal of Magnetic Vortex Core. Ukrainian Journal of Physics, 58(6), 596. https://doi.org/10.15407/ujpe58.06.0596

Issue

Section

Nanosystems