Mechanism of Fast Axially Symmetric Reversal of Magnetic Vortex Core

  • O. V. Pylypovskyi Taras Shevchenko National University of Kyiv
  • D. D. Sheka Taras Shevchenko National University of Kyiv
  • V. P. Kravchuk Bogolyubov Institute for Theoretical Physics, Nat. Acad. of Sci. of Ukraine
  • Yu. B. Gaididei Bogolyubov Institute for Theoretical Physics, Nat. Acad. of Sci. of Ukraine
  • F. G. Mertens Physics Institute, University of Bayreuth
Keywords: magnetic vortex, nanodot, nanodisk, vortex random-access memories

Abstract

The magnetic vortex core in a nanodot can be switched by an alternating transversal magnetic field. We propose a simple collective coordinate model, which describes the comprehensive vortex core dynamics, including the resonant behavior, weakly nonlinear regimes, and reversal dynamics. A chaotic dynamics of the vortex polarity is predicted. All analytical results are confirmed by micromagnetic simulations.

References



  1. H.-B. Braun, Adv. in Phys. 61, 1 (2012), http:// www.tandfonline.com/doi/abs/10.1080/00018732.2012. 663070

  2. A. Wachowiak, J. Wiebe, M. Bode, O. Pietzsch, M. Morgenstern, and R. Wiesendanger, Science 298, 577 (2002), http://www.sciencemag.org/cgi/content/abstract/298/5593/577. https://doi.org/10.1126/science.1075302

  3. A. Hubert and R. Sch¨afer, Magnetic Domains: the Analysis of Magnetic Microstructures (Springer, Berlin, 1998).

  4. S.-K. Kim, K.-S. Lee, Y.-S. Yu, and Y.-S. Choi, Appl. Phys. Lett. 92, 022509 (2008). https://doi.org/10.1063/1.2807274

  5. Y.-S. Yu, H. Jung, K.-S. Lee, P. Fischer, and S.-K. Kim, Appl. Phys. Lett. 98, 052507 (2011). https://doi.org/10.1063/1.3551524

  6. Y.B. Gaididei, V.P. Kravchuk, D.D. Sheka, and F.G. Mertens, Low Temp. Phys. 34, 528 (2008). https://doi.org/10.1063/1.2957013

  7. V.P. Kravchuk, Y. Gaididei, and D.D. Sheka, Phys. Rev. B 80, 100405 (2009). https://doi.org/10.1103/PhysRevB.80.100405

  8. Y. Gaididei, V.P. Kravchuk, D.D. Sheka, and F.G. Mertens, Phys. Rev. B 81, 094431 (2010). https://doi.org/10.1103/PhysRevB.81.094431

  9. T. Okuno, K. Shigeto, T. Ono, K. Mibu, and T. Shinjo, J. Magn. Magn. Mater. 240, 1 (2002). https://doi.org/10.1016/S0304-8853(01)00708-9

  10. A. Thiaville, J.M. Garcia, R. Dittrich, J. Miltat, and T. Schrefl, Phys. Rev. B 67, 094410 (2003). https://doi.org/10.1103/PhysRevB.67.094410

  11. V. Kravchuk and D. Sheka, Phys. of Sol. State 49, 1923 (2007). https://doi.org/10.1134/S1063783407100186

  12. L. Vila, M. Darques, A. Encinas, U. Ebels, J.-M. George, G. Faini, A. Thiaville, and L. Piraux, Phys. Rev. B 79, 172410 (2009). https://doi.org/10.1103/PhysRevB.79.172410

  13. R. Wang and X. Dong, Appl. Phys. Lett. 100, 082402 (2012). https://doi.org/10.1063/1.3687909

  14. M.-W. Yoo, J. Lee, and S.-K. Kim, Appl. Phys. Lett. 100, 172413 (2012). https://doi.org/10.1063/1.4705690

  15. M. Abramowitz and I.A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables (Dover, New York, 1964).

  16. J. Kevorkian and J. Cole, Perturbation Methods in Applied Mathematics (Springer, Berlin, 1981).

  17. A. Nayfeh, Problems in Perturbation (Wiley, New York, 1985).

  18. A. Nayfeh, Perturbation Methods (Wiley, New York, 2008).

  19. The Object Oriented MicroMagnetic Framework, note developed by M.J. Donahue and D. Porter mainly, from NIST. We used the 3D version of the 1.2α4 release, http://math.nist.gov/oommf/.

  20. S. Petit-Watelot, J.-V. Kim, A. Ruotolo, R.M. Otxoa, K. Bouzehouane, J. Grollier, A. Vansteenkiste, B. Van de Wiele, V. Cros, and T. Devolder, Nat. Phys. 8, 682 (2012).


Published
2018-10-10
How to Cite
Pylypovskyi, O., Sheka, D., Kravchuk, V., Gaididei, Y., & Mertens, F. (2018). Mechanism of Fast Axially Symmetric Reversal of Magnetic Vortex Core. Ukrainian Journal of Physics, 58(6), 596. https://doi.org/10.15407/ujpe58.06.0596
Section
Nanosystems