Magnetic Dynamics of a Multiferroic with an Antiferromagnetic Layer

  • S. V. Kondovych National Technical University of Ukraine “Kyiv Polytechnical Institute”
  • H. V. Gomonay National Technical University of Ukraine “Kyiv Polytechnical Institute”
  • V. M. Loktev Bogolyubov Institute for Theoretical Physics, Nat. Acad. of Sci. of Ukraine
Keywords: antiferromagnet, piezoelectric, multiferroic, nanoparticles, Lagrangian

Abstract

Shape effects in magnetic particles are widely studied, because of the ability of the shape and the size to control the parameters of a sample during its production. Experiments with nano-sized samples show that the shape can affect also the properties of antiferromagnetic (AFM) materials. However, the theoretical interpretation of these effects is under discussion. A model to study the shape-induced effects in AFM particles at the AFM resonance frequency is proposed. The Lagrange function method is used to calculate the spectrum of resonance oscillations of the AFM vector in a synthetic multiferroic (piezoelectric + antiferromagnet). The influence of the specimen shape on the AFM resonance frequency in the presence of an external magnetic field is studied. Conditions for a resonance under the action of an external force or for a parametric resonance to arise in the magnetic subsystem are considered.

References



  1. R.P. Cowburn, J. Phys. D: Appl. Phys. 33, R1 (2000). https://doi.org/10.1088/0022-3727/33/1/201

  2. E.Y. Vedmedenko, H.P. Oepen, and J. Kirschner, J. Magn. Magn. Mater. 256, 237 (2003). https://doi.org/10.1016/S0304-8853(02)00506-1

  3. Yi Li, Yiran Lu, and W.E. Bailey, J. Appl. Phys. 113, 17B506 (2013). https://doi.org/10.1063/1.4794876

  4. E. Folven, T. Tybell, A. Scholl, A. Young, S.T. Retterer, Y. Takamura, and J.K. Grepstad, Nano Lett. 10, 4578 (2010). https://doi.org/10.1021/nl1025908

  5. E. Folven, A. Scholl, A. Young, S.T. Retterer, J.E. Boschker, T. Tybell, Y. Takamura, and J.K. Grepstad, Phys. Rev. B 84, 220410 (2011). https://doi.org/10.1103/PhysRevB.84.220410

  6. E. Folven, A. Scholl, A. Young, S.T. Retterer, J.E. Boschker, T. Tybell, Y. Takamura, and J.K. Grepstad, Nano Lett. 12, 2386 (2012). https://doi.org/10.1021/nl300361e

  7. A.S. Davydov, Theory of Molecular Excitons (Plenum Press, New York, 1971). https://doi.org/10.1007/978-1-4899-5169-4

  8. H.V. Gomonay and V.M. Loktev, Phys. Rev. B 75, 174439 (2007). https://doi.org/10.1103/PhysRevB.75.174439

  9. H.V. Gomonay, E.G. Kornienko, and V.M. Loktev, Ukr. J. Phys. 50, 816 (2005).

  10. E.A. Turov, A.V. Kolchanov, V.V. Menshenin, I.F. Mirsaev, and V.V. Nikolaev, Symmetry and Physical Properties of Antiferromagnets (Fizmatlit, Moscow, 2001) (in Russian).

  11. S.V. Kondovych and H.V. Gomonay, Visn. Lviv. Univ. Ser. Fiz. 47, 159 (2012).

  12. P. de V. Du Plessis, S.J. van Tonder, and L. Alberts, J. Phys. C 4, 1983 (1971).

  13. P. de V. Du Plessis, S.J. van Tonder, and L. Alberts, J. Phys. C 4, 2565 (1971).

  14. M.T. Hutchings and E.J. Samuelsen, Phys. Rev. B 6, 3447 (1972). https://doi.org/10.1103/PhysRevB.6.3447

  15. L.D. Landau and E.M. Lifshitz, Mechanics (ButterworthHeinemann, Oxford, 2001).


Published
2018-10-10
How to Cite
Kondovych, S., Gomonay, H., & Loktev, V. (2018). Magnetic Dynamics of a Multiferroic with an Antiferromagnetic Layer. Ukrainian Journal of Physics, 58(6), 586. https://doi.org/10.15407/ujpe58.06.0586
Section
Nanosystems