Stabilizing Role of Lattice Anharmonicity in the Bisoliton Dynamics
DOI:
https://doi.org/10.15407/ujpe58.06.0562Keywords:
lattice anharmonicity, bisoliton, bisolectron, Coulomb repulsion, electron, hole, exciton, polaron, model HamiltonianAbstract
We show that, in anharmonic one-dimensional lattices, the pairing of electrons or holes in a localized bisoliton (called also bisolectron) state is possible due to a coupling between the charges and the lattice deformation that can overcome the Coulomb repulsion. We show that bisolitons are dynamically stable up to the sound velocities in lattices with cubic or quartic anharmonicities, and have finite values of energy and momentum in the whole interval of bisoliton velocities up to the sound velocity in the chain. We calculate the bisoliton binding energy and the critical value of Coulomb repulsion at which the bisoliton becomes unstable and decays into two independent electrosolitons. We estimate these energies for chain parameters that are typical of biological macromolecules and some quasi-one-dimensional conducting systems and show that the Coulomb repulsion in such systems is relatively weak as compared with the binding energy. Our analytical results are in a good agreement with the results of numerical simulations in a broad interval of the parameter values.
References
<li> L.D. Landau, Phys. Z. Sowjetunion. 3, 664 (1933).</li>
<li> S.I. Pekar, Untersuchungen ¨uber die Elektronentheorie (Akademie, Berlin, 1954).</li>
<li> E.I. Rashba, Izv. Akad. Nauk USSR, Ser. Fiz. 21, 37 (1957).</li>
<li> A.S. Alexandrov and N. Mott, Polarons and Bipolarons (World Scientific, Singapore, 1995).</li>
<li> Polarons in Advanced Materials, edited by A.S. Alexandrov (Springer, Berlin, 2007).</li>
<li> A.S. Davydov, Solitons in Molecular Systems (Reidel, Dordrecht, 1991). <a href="https://doi.org/10.1007/978-94-011-3340-1">https://doi.org/10.1007/978-94-011-3340-1</a></li>
<li> Davydov's Soliton Revisited. Self-Trapping of Vibrational Energy in Proteins, edited by A.L. Christiansen and A.C. Scott (Plenum Press, New York, 1983).</li>
<li> A.C. Scott, Phys. Rep. 217, 1 (1992). <a href="https://doi.org/10.1016/0370-1573(92)90093-F">https://doi.org/10.1016/0370-1573(92)90093-F</a></li>
<li> L.S. Brizhik and A.S. Davydov, J. Low Temp. Phys. 10, 748 (1984).</li>
<li> L.S. Brizhik and A.S. Davydov, J. Low Temp. Phys. 10, 748 (1984).</li>
<li> L.S. Brizhik, J. Low Temp. Phys. 12, 437 (1986).</li>
<li> A.S. Davydov and A.V. Zolotaryuk, Phys. Stat. Sol. (b) 115, 115 (1983). <a href="https://doi.org/10.1002/pssb.2221150113">https://doi.org/10.1002/pssb.2221150113</a></li>
<li> A.S. Davydov and A.V. Zolotaryuk, Phys. Lett. A 94, 49 (1983). <a href="https://doi.org/10.1016/0375-9601(83)90285-2">https://doi.org/10.1016/0375-9601(83)90285-2</a></li>
<li> A. S. Davydov and A. V. Zolotaryuk, Phys. Scripta 30, 426 (1984). <a href="https://doi.org/10.1088/0031-8949/30/6/010">https://doi.org/10.1088/0031-8949/30/6/010</a></li>
<li> M.G. Velarde, L Brizhik, A.P. Chetverikov, L. Cruzeiro, V. Ebeling, and G. R¨o pke, Int. J. Quant. Chem. 112, 551(2012). <a href="https://doi.org/10.1002/qua.23008">https://doi.org/10.1002/qua.23008</a></li>
<li> M.G. Velarde, L. Brizhik, A.P. Chetverikov, L. Cruzeiro, V. Ebeling, and G. R¨opke, Int. J. Quant. Chem. 112, 2591 (2012). <a href="https://doi.org/10.1002/qua.23282">https://doi.org/10.1002/qua.23282</a></li>
<li> M. Toda, Theory of Nonlinear Lattices (Springer, New York, 1989). <a href="https://doi.org/10.1007/978-3-642-83219-2">https://doi.org/10.1007/978-3-642-83219-2</a></li>
<li> M. Toda, Nonlinear Waves and Solitons (KTK Sci. Publ., Tokyo, 1989).</li>
<li> D.J. Korteweg and G. de Vries, Phil. Mag. 39, 442 (1895).</li>
<li> C.I. Christov, G.A. Maugin, and M.G. Velarde, Phys. Rev. E 54, 3621 (1996). <a href="https://doi.org/10.1103/PhysRevE.54.3621">https://doi.org/10.1103/PhysRevE.54.3621</a></li>
<li> M. Remoissenet, Waves Called Solitons (Springer, Berlin, 1999). <a href="https://doi.org/10.1007/978-3-662-03790-4">https://doi.org/10.1007/978-3-662-03790-4</a></li>
<li> V.I. Nekorkin and M. G. Velarde, Synergetic Phenomena in Active Lattices. Patterns, Waves, Solitons, Chaos (Springer, Berlin, 2002). <a href="https://doi.org/10.1007/978-3-642-56053-8">https://doi.org/10.1007/978-3-642-56053-8</a></li>
<li> T. Dauxois and M. Peyrard, Physics of Solitons (Cambridge Univ. Press, Cambridge, 2006).</li>
<li> L. Cruzeiro, J.C. Eilbeck, J.L. Marin, and F.M. Russell, Eur. Phys. J. B 42, 95 (2004). <a href="https://doi.org/10.1140/epjb/e2004-00360-1">https://doi.org/10.1140/epjb/e2004-00360-1</a></li>
<li> M.G. Velarde, Ch. Neissner, Int. J. Bifurcation Chaos, 18, 885 (2008). <a href="https://doi.org/10.1142/S0218127408020744">https://doi.org/10.1142/S0218127408020744</a></li>
<li> M.G. Velarde, W. Ebeling, A.P. Chetverikov, Int. J. Bifurcation Chaos 18, 3815 (2008). <a href="https://doi.org/10.1142/S0218127408022767">https://doi.org/10.1142/S0218127408022767</a></li>
<li> D. Hennig, M.G. Velarde, W. Ebeling, and A.P. Chetverikov, Phys. Rev. E 78, 066606 (2008). <a href="https://doi.org/10.1103/PhysRevE.78.066606">https://doi.org/10.1103/PhysRevE.78.066606</a></li>
<li> M.G. Velarde, J. Comput. Appl. Math. 233, 1432 (2010). <a href="https://doi.org/10.1016/j.cam.2008.07.058">https://doi.org/10.1016/j.cam.2008.07.058</a></li>
<li> W. Ebeling, M.G. Velarde, and A.P. Chetverikov, Cond. Matt. Phys. 12, 633 (2009). <a href="https://doi.org/10.5488/CMP.12.4.633">https://doi.org/10.5488/CMP.12.4.633</a></li>
<li> L. Brizhik, A.P. Chetverikov, W. Ebeling, G. R¨o pke, and M. G. Velarde, Phys. Rev. B 85, 245105 (2012). <a href="https://doi.org/10.1103/PhysRevB.85.245105">https://doi.org/10.1103/PhysRevB.85.245105</a></li>
<li> L. Brizhik, L. Cruzeiro-Hansson, A. Eremko, and Yu. Olkhovska, Phys. Rev. B 61, 1129 (2000). <a href="https://doi.org/10.1103/PhysRevB.61.1129">https://doi.org/10.1103/PhysRevB.61.1129</a></li>
<li> L. Brizhik, L. Cruzeiro-Hansson, A. Eremko, and Yu. Olkhovska, Synth. Met. 109, 113 (2000). <a href="https://doi.org/10.1016/S0379-6779(99)00209-X">https://doi.org/10.1016/S0379-6779(99)00209-X</a></li>
<li> V.D. Lakhno and V.B. Sultanov, J. Appl. Phys. 112, 064701 (2012). <a href="https://doi.org/10.1063/1.4752875">https://doi.org/10.1063/1.4752875</a></li>
<li> E.G. Wilson, J. Phys. C 16 6739 (1983).</li>
<li> K.J. Donovan and E.G. Wilson, Phil. Mag. B 44, 9 (1981). <a href="https://doi.org/10.1080/01418638108222364">https://doi.org/10.1080/01418638108222364</a></li>
<li> A.A. Gogolin, Pis'ma Zh. Eksp. Teor. Phys. 43, 395 (1986)</li>
<li> Electronic Properties of Inorganic Quasi-One-Dimensional Compounds, edited by P. Monceau, Part II, (Reidel, Dordrecht, 1985).</li>
<li> B.G. Streetman and B. Sanjay, Solid State Electronic Devices (Prentice-Hall, Englewood Cliff, NJ, 2000).</li>
<li> Y. Zhang, X. Ke, C. Chen, and P.C. Kent, Phys. Rev. B 80, 024303 (2009).</li>
<li> Lead Selenide (PbSe) Crystal Structure, Lattice Parameters, Thermal Expansion, edited by O. Madelung, U. R¨ossler, and M. Schultz (Springer, Berlin, 2005), Vol. 41C, available at: http://www.springermaterials.com.</li>
<li> J. Androulakis, Y. Lee, I. Todorov et al., Phys. Rev. B 83, 195209 (2011). <a href="https://doi.org/10.1103/PhysRevB.83.195209">https://doi.org/10.1103/PhysRevB.83.195209</a></li>
<li> C. Falter and G.A. Hoffmann, Phys. Rev. B 64, 054516 (2001). <a href="https://doi.org/10.1103/PhysRevB.64.054516">https://doi.org/10.1103/PhysRevB.64.054516</a></li>
<li> K.-P. Bohnen, R. Heid, and M. Krauss, Europhys. Lett. 64, 104 (2003). <a href="https://doi.org/10.1209/epl/i2003-00143-x">https://doi.org/10.1209/epl/i2003-00143-x</a></li>
<li> R.J. McQueeney, Y. Petrov, T. Egami et al., Phys. Rev. Lett. 82, 628 (1999). <a href="https://doi.org/10.1103/PhysRevLett.82.628">https://doi.org/10.1103/PhysRevLett.82.628</a></li>
<li> T.P. Devereaux, T. Cuk, Z.-X. Shen, and N. Nagaosa, Phys. Rev. Lett. 93, 117004 (2004). <a href="https://doi.org/10.1103/PhysRevLett.93.117004">https://doi.org/10.1103/PhysRevLett.93.117004</a></li>
<li> J.-H. Chung, T. Egami, R.J. McQueeney et al., Phys. Rev. B 67, 014517 (2003). <a href="https://doi.org/10.1103/PhysRevB.67.014517">https://doi.org/10.1103/PhysRevB.67.014517</a></li>
</ol>
Downloads
Published
How to Cite
Issue
Section
License
Copyright Agreement
License to Publish the Paper
Kyiv, Ukraine
The corresponding author and the co-authors (hereon referred to as the Author(s)) of the paper being submitted to the Ukrainian Journal of Physics (hereon referred to as the Paper) from one side and the Bogolyubov Institute for Theoretical Physics, National Academy of Sciences of Ukraine, represented by its Director (hereon referred to as the Publisher) from the other side have come to the following Agreement:
1. Subject of the Agreement.
The Author(s) grant(s) the Publisher the free non-exclusive right to use the Paper (of scientific, technical, or any other content) according to the terms and conditions defined by this Agreement.
2. The ways of using the Paper.
2.1. The Author(s) grant(s) the Publisher the right to use the Paper as follows.
2.1.1. To publish the Paper in the Ukrainian Journal of Physics (hereon referred to as the Journal) in original language and translated into English (the copy of the Paper approved by the Author(s) and the Publisher and accepted for publication is a constitutive part of this License Agreement).
2.1.2. To edit, adapt, and correct the Paper by approval of the Author(s).
2.1.3. To translate the Paper in the case when the Paper is written in a language different from that adopted in the Journal.
2.2. If the Author(s) has(ve) an intent to use the Paper in any other way, e.g., to publish the translated version of the Paper (except for the case defined by Section 2.1.3 of this Agreement), to post the full Paper or any its part on the web, to publish the Paper in any other editions, to include the Paper or any its part in other collections, anthologies, encyclopaedias, etc., the Author(s) should get a written permission from the Publisher.
3. License territory.
The Author(s) grant(s) the Publisher the right to use the Paper as regulated by sections 2.1.1–2.1.3 of this Agreement on the territory of Ukraine and to distribute the Paper as indispensable part of the Journal on the territory of Ukraine and other countries by means of subscription, sales, and free transfer to a third party.
4. Duration.
4.1. This Agreement is valid starting from the date of signature and acts for the entire period of the existence of the Journal.
5. Loyalty.
5.1. The Author(s) warrant(s) the Publisher that:
– he/she is the true author (co-author) of the Paper;
– copyright on the Paper was not transferred to any other party;
– the Paper has never been published before and will not be published in any other media before it is published by the Publisher (see also section 2.2);
– the Author(s) do(es) not violate any intellectual property right of other parties. If the Paper includes some materials of other parties, except for citations whose length is regulated by the scientific, informational, or critical character of the Paper, the use of such materials is in compliance with the regulations of the international law and the law of Ukraine.
6. Requisites and signatures of the Parties.
Publisher: Bogolyubov Institute for Theoretical Physics, National Academy of Sciences of Ukraine.
Address: Ukraine, Kyiv, Metrolohichna Str. 14-b.
Author: Electronic signature on behalf and with endorsement of all co-authors.