Stabilizing Role of Lattice Anharmonicity in the Bisoliton Dynamics

  • L. Brizhik Bogolyubov Institute for Theoretical Physics, Nat. Acad. of Sci. of Ukraine, Wessex Institute of Technology
  • A. P. Chetverikov Faculty of Physics, Chernyshevsky State University
  • W. Ebeling Institut f¨ur Physik, Humboldt Universit¨at
  • G. R¨opke Institut f¨ur Physik, Universit¨at Rostock
  • M. G. Velarde Instituto Pluridisciplinar, Universidad Complutense, Wessex Institute of Technology
Keywords: lattice anharmonicity, bisoliton, bisolectron, Coulomb repulsion, electron, hole, exciton, polaron, model Hamiltonian


We show that, in anharmonic one-dimensional lattices, the pairing of electrons or holes in a localized bisoliton (called also bisolectron) state is possible due to a coupling between the charges and the lattice deformation that can overcome the Coulomb repulsion. We show that bisolitons are dynamically stable up to the sound velocities in lattices with cubic or quartic anharmonicities, and have finite values of energy and momentum in the whole interval of bisoliton velocities up to the sound velocity in the chain. We calculate the bisoliton binding energy and the critical value of Coulomb repulsion at which the bisoliton becomes unstable and decays into two independent electrosolitons. We estimate these energies for chain parameters that are typical of biological macromolecules and some quasi-one-dimensional conducting systems and show that the Coulomb repulsion in such systems is relatively weak as compared with the binding energy. Our analytical results are in a good agreement with the results of numerical simulations in a broad interval of the parameter values.


  1. L.D. Landau, Phys. Z. Sowjetunion. 3, 664 (1933).

  2. S.I. Pekar, Untersuchungen ¨uber die Elektronentheorie (Akademie, Berlin, 1954).

  3. E.I. Rashba, Izv. Akad. Nauk USSR, Ser. Fiz. 21, 37 (1957).

  4. A.S. Alexandrov and N. Mott, Polarons and Bipolarons (World Scientific, Singapore, 1995).

  5. Polarons in Advanced Materials, edited by A.S. Alexandrov (Springer, Berlin, 2007).

  6. A.S. Davydov, Solitons in Molecular Systems (Reidel, Dordrecht, 1991).

  7. Davydov's Soliton Revisited. Self-Trapping of Vibrational Energy in Proteins, edited by A.L. Christiansen and A.C. Scott (Plenum Press, New York, 1983).

  8. A.C. Scott, Phys. Rep. 217, 1 (1992).

  9. L.S. Brizhik and A.S. Davydov, J. Low Temp. Phys. 10, 748 (1984).

  10. L.S. Brizhik and A.S. Davydov, J. Low Temp. Phys. 10, 748 (1984).

  11. L.S. Brizhik, J. Low Temp. Phys. 12, 437 (1986).

  12. A.S. Davydov and A.V. Zolotaryuk, Phys. Stat. Sol. (b) 115, 115 (1983).

  13. A.S. Davydov and A.V. Zolotaryuk, Phys. Lett. A 94, 49 (1983).

  14. A. S. Davydov and A. V. Zolotaryuk, Phys. Scripta 30, 426 (1984).

  15. M.G. Velarde, L Brizhik, A.P. Chetverikov, L. Cruzeiro, V. Ebeling, and G. R¨o pke, Int. J. Quant. Chem. 112, 551(2012).

  16. M.G. Velarde, L. Brizhik, A.P. Chetverikov, L. Cruzeiro, V. Ebeling, and G. R¨opke, Int. J. Quant. Chem. 112, 2591 (2012).

  17. M. Toda, Theory of Nonlinear Lattices (Springer, New York, 1989).

  18. M. Toda, Nonlinear Waves and Solitons (KTK Sci. Publ., Tokyo, 1989).

  19. D.J. Korteweg and G. de Vries, Phil. Mag. 39, 442 (1895).

  20. C.I. Christov, G.A. Maugin, and M.G. Velarde, Phys. Rev. E 54, 3621 (1996).

  21. M. Remoissenet, Waves Called Solitons (Springer, Berlin, 1999).

  22. V.I. Nekorkin and M. G. Velarde, Synergetic Phenomena in Active Lattices. Patterns, Waves, Solitons, Chaos (Springer, Berlin, 2002).

  23. T. Dauxois and M. Peyrard, Physics of Solitons (Cambridge Univ. Press, Cambridge, 2006).

  24. L. Cruzeiro, J.C. Eilbeck, J.L. Marin, and F.M. Russell, Eur. Phys. J. B 42, 95 (2004).

  25. M.G. Velarde, Ch. Neissner, Int. J. Bifurcation Chaos, 18, 885 (2008).

  26. M.G. Velarde, W. Ebeling, A.P. Chetverikov, Int. J. Bifurcation Chaos 18, 3815 (2008).

  27. D. Hennig, M.G. Velarde, W. Ebeling, and A.P. Chetverikov, Phys. Rev. E 78, 066606 (2008).

  28. M.G. Velarde, J. Comput. Appl. Math. 233, 1432 (2010).

  29. W. Ebeling, M.G. Velarde, and A.P. Chetverikov, Cond. Matt. Phys. 12, 633 (2009).

  30. L. Brizhik, A.P. Chetverikov, W. Ebeling, G. R¨o pke, and M. G. Velarde, Phys. Rev. B 85, 245105 (2012).

  31. L. Brizhik, L. Cruzeiro-Hansson, A. Eremko, and Yu. Olkhovska, Phys. Rev. B 61, 1129 (2000).

  32. L. Brizhik, L. Cruzeiro-Hansson, A. Eremko, and Yu. Olkhovska, Synth. Met. 109, 113 (2000).

  33. V.D. Lakhno and V.B. Sultanov, J. Appl. Phys. 112, 064701 (2012).

  34. E.G. Wilson, J. Phys. C 16 6739 (1983).

  35. K.J. Donovan and E.G. Wilson, Phil. Mag. B 44, 9 (1981).

  36. A.A. Gogolin, Pis'ma Zh. Eksp. Teor. Phys. 43, 395 (1986)

  37. Electronic Properties of Inorganic Quasi-One-Dimensional Compounds, edited by P. Monceau, Part II, (Reidel, Dordrecht, 1985).

  38. B.G. Streetman and B. Sanjay, Solid State Electronic Devices (Prentice-Hall, Englewood Cliff, NJ, 2000).

  39. Y. Zhang, X. Ke, C. Chen, and P.C. Kent, Phys. Rev. B 80, 024303 (2009).

  40. Lead Selenide (PbSe) Crystal Structure, Lattice Parameters, Thermal Expansion, edited by O. Madelung, U. R¨ossler, and M. Schultz (Springer, Berlin, 2005), Vol. 41C, available at:

  41. J. Androulakis, Y. Lee, I. Todorov et al., Phys. Rev. B 83, 195209 (2011).

  42. C. Falter and G.A. Hoffmann, Phys. Rev. B 64, 054516 (2001).

  43. K.-P. Bohnen, R. Heid, and M. Krauss, Europhys. Lett. 64, 104 (2003).

  44. R.J. McQueeney, Y. Petrov, T. Egami et al., Phys. Rev. Lett. 82, 628 (1999).

  45. T.P. Devereaux, T. Cuk, Z.-X. Shen, and N. Nagaosa, Phys. Rev. Lett. 93, 117004 (2004).

  46. J.-H. Chung, T. Egami, R.J. McQueeney et al., Phys. Rev. B 67, 014517 (2003).

How to Cite
Brizhik, L., Chetverikov, A., Ebeling, W., R¨opkeG., & Velarde, M. (2018). Stabilizing Role of Lattice Anharmonicity in the Bisoliton Dynamics. Ukrainian Journal of Physics, 58(6), 562.
Soft matter