Microscopic Description of Nonextensive Systems in the Framework of the Ising Model

  • O. V. Yushchenko Sumy State University
  • A. Yu. Badalyan Sumy State University
Keywords: Ising model, Hamiltonian, order parameter

Abstract

To describe the behavior of nonextensive systems, the deformed Ising Hamiltonian is introduced by substituting the spin variable si by the deformed one sqi. In the framework of mean-field theory, the phase transition paramagnet–ferromagnet is investigated for the deformed partition function. The influence of the non-extensive parameter q on the free-energy density and the steady-state value of order parameter is studied in the Landau approximation.

References



  1. C. Tsallis, Introduction to Nonextensive Statistical Mechanics – Approaching a Complex World (Springer, New York, 2009).

  2. A. Taruya and M. Sakagami, Physica A 307, 185 (2002). https://doi.org/10.1016/S0378-4371(01)00622-7

  3. A. Lavagno, G. Kaniadakis, M. Rego-Monteiro et al., Astrophys. Lett. Commum. 35, 449 (1998).

  4. W. Alberico, A. Lavagno, and P. Quarati, Eur. Phys. J. C 12, 499 (1999). https://doi.org/10.1007/s100529900220

  5. M. Coraddu, G. Kaniadakis et al., Braz. J. Phys. 29, 153 (1999). https://doi.org/10.1590/S0103-97331999000100014

  6. G. Kaniadakis, A. Lavagno, and P. Quarati, Phys. Lett. B 369, 308 (1996). https://doi.org/10.1016/0370-2693(95)01535-3

  7. A. Lavagno and P. Quarati, Nucl. Phys. B Proc. Suppl. 87, 209 (2000). https://doi.org/10.1016/S0920-5632(00)00669-1

  8. F. Buyukkilic, I. Sokmen, and D. Demirhan, Chaos Solit. Fract. 13, 749 (2002). https://doi.org/10.1016/S0960-0779(01)00047-9

  9. S. Martinez, F. Pennini et al., Physica A 295, 224 (2001). https://doi.org/10.1016/S0378-4371(01)00078-4

  10. S. Martinez, F. Pennini, A. Plastino, and C. Tessone, Physica A 309, 85 (2002). https://doi.org/10.1016/S0378-4371(02)00621-0

  11. C. Tsallis, J.C. Anjos, and E.P. Borges, Phys. Lett. A 310, 372 (2003). https://doi.org/10.1016/S0375-9601(03)00377-3

  12. H. Uys, H.G. Miller, and F.C. Khanna, Phys. Lett. A 289, 264 (2001). https://doi.org/10.1016/S0375-9601(01)00587-4

  13. L. Salasnich, Int. J. Mod.Phys. B 14, 405 (2000).

  14. L. Borland and J.G. Menchero, Braz. J. Phys. 29, 169 (1999). https://doi.org/10.1590/S0103-97331999000100015

  15. N. Arimitsu and T. Arimitsu, Europhys. Lett. 60, 60 (2002). https://doi.org/10.1209/epl/i2002-00318-5

  16. E.K. Lenzi, C. Anteneodo, and L. Borland, Phys. Rev. E 63, 051109 (2001). https://doi.org/10.1103/PhysRevE.63.051109

  17. F.A. Tamarit, S.A. Cannas, and C. Tsallis, Eur. Phys. J. B 1, 545 (1998). https://doi.org/10.1007/s100510050217

  18. A.B. Adiba, A.A. Moreirab, J.S. Andrade et al., Physica A 322, 276 (2003). https://doi.org/10.1016/S0378-4371(02)01601-1

  19. Nonextensive Statistical Mechanics and Its Applications, edited by S. Abe and Y. Okamoto (Springer, Berlin, 2001).

  20. C. Tsallis, R.S. Mendes, and A.R. Plastino, Physica A 261, 534 (1998). https://doi.org/10.1016/S0378-4371(98)00437-3

  21. E.P. Borges, Physica A 340, 95 (2004). https://doi.org/10.1016/j.physa.2004.03.082

  22. H. Suyari, arXiv: cond-mat/0401541 (2004).

  23. R. Brout, Phase Transitions (Benjamin, New York, 1965). https://doi.org/10.1007/978-1-4899-6443-4_1

  24. A.I. Olemskoi and D.O. Kharchenko, Physica A 293, 178 (2001). https://doi.org/10.1016/S0378-4371(00)00601-4


Published
2018-10-06
How to Cite
Yushchenko, O., & Badalyan, A. (2018). Microscopic Description of Nonextensive Systems in the Framework of the Ising Model. Ukrainian Journal of Physics, 58(5), 497. https://doi.org/10.15407/ujpe58.05.0497
Section
General problems of theoretical physics