Formation of Nanostructures on the VdW-Surface of CdI2 Crystals

Authors

  • I. M. Bolesta Ivan Franko National University of Lviv, Faculty of Electronics, Chair of Radiophysics and Computer Technologies
  • I. N. Rovetskyj Ivan Franko National University of Lviv, Faculty of Electronics, Chair of Radiophysics and Computer Technologies
  • M. V. Partyka Ivan Franko National University of Lviv, Faculty of Physics, Chair of Solid State Physics
  • I. D. Karbovnyk Ivan Franko National University of Lviv, Faculty of Electronics, Chair of Radiophysics and Computer Technologies
  • B. Ya. Kulyk Ivan Franko National University of Lviv, Faculty of Physics, Chair of Solid State Physics

DOI:

https://doi.org/10.15407/ujpe58.05.0490

Keywords:

nanoclusters, nanopores, Van der Waals surfaces, Bridgman–Stockbarger method

Abstract

Morphological characteristics of nano-sized defects and nanostructures formed on the surface of CdI2 layered crystals have been studied, and the processes of their growth under conditions close to the thermodynamic equilibrium have been analyzed. The formation of nano-sized structures – nanoclusters and nanopores – emerging on the CdI2 surface after holding the crystals in air for some time is revealed for the first time. A mechanism of cluster formation is proposed, which includes a number of stages of cluster growth; these are the nucleation, formation of separate noninteracting nanoaggregates, and association of the latter into agglomerates. The major morphometric characteristics of nanostructures – their average radius and height, and the average distance between the nearest neighbors – are analyzed.

References

<ol>

<li> M.A. Wahab and G.C. Trigunayat, Solid State Commun. 36, 885 (1981).&nbsp;<a href="https://doi.org/10.1016/0038-1098(80)90133-7">https://doi.org/10.1016/0038-1098(80)90133-7</a></li>
<li> Q.-J. Liu, Z.-T. Liu, and L.-P. Feng, Phys. Status Solidi B 248, 1629 (2011).&nbsp;<a href="https://doi.org/10.1002/pssb.201046481">https://doi.org/10.1002/pssb.201046481</a></li>
<li> K. Ueno, K. Sasaki, K. Saiki, and A. Koma, Jpn. J. Appl. Phys. 38, 511 (1999).&nbsp;<a href="https://doi.org/10.1143/JJAP.38.511">https://doi.org/10.1143/JJAP.38.511</a></li>
<li> S.I. Drapak, A.P. Bakhtinov, S.V. Gavrilyuk, Yu.I. Prilutskii, and Z.D. Kovalyuk, Fiz. Tverd. Tela 48, 1515 (2006).</li>
<li> W. Jaegermann, C. Pettenkofer, and B.A. Parkinson, Phys. Rev. B 42, 7487 (1990).&nbsp;<a href="https://doi.org/10.1103/PhysRevB.42.7487">https://doi.org/10.1103/PhysRevB.42.7487</a></li>
<li> E. Wisotzki, A. Klein, W. Jaegermann, Thin Solid Films 380, 263 (2000).&nbsp;<a href="https://doi.org/10.1016/S0040-6090(00)01520-0">https://doi.org/10.1016/S0040-6090(00)01520-0</a></li>
<li> O. Lang, R. Schlaf, Y. Tomm, C. Pettenkofer, and W. Jaegermann, J. Appl. Phys. 75, 7805 (1994).&nbsp;<a href="https://doi.org/10.1063/1.356562">https://doi.org/10.1063/1.356562</a></li>
<li> A.I. Dmitriev, Zh. Tekhn. Fiz. 82, 114 (2012).</li>
<li> A.P. Bakhtinov, V.N. Vodop'yanov, E.I. Slyn'ko, Z.D. Kovalyuk, and O.S. Litvin, Pis'ma Zh. Tekhn. Fiz. 33, No. 2, 80 (2007).</li>
<li> A.P. Bakhtinov, Z.R. Kudrinskii, and O.S. Litvin, Fiz. Tverd. Tela 53, 2045 (2011).</li>
<li> A.P. Bakhtinov, Z.D. Kovalyuk, O.N. Sidor, V.N. Katerinchuk, and O.S. Litvin, Fiz. Tverd. Tela 49, 1497 (2007).</li>
<li> A.I. Dmitriev, V.V. Vishnyak, G.V. Lashkarev, V.L. Karbovskii, Z.D. Kovalyuk, and A.P. Bakhtinov, Fiz. Tverd. Tela 53, 579 (2011).</li>
<li> O.A. Balitskii, V.P. Savchyn, and Ya.M. Fiyala, Funct. Mater. 12, 206 (2005).</li>
<li> O.A. Balitskii, Mater. Lett. 60, 594 (2006).&nbsp;<a href="https://doi.org/10.1016/j.matlet.2005.09.037">https://doi.org/10.1016/j.matlet.2005.09.037</a></li>
<li> O.A. Balitskii, J. Electr. Microsc. 55, 261 (2006).&nbsp;<a href="https://doi.org/10.1093/jmicro/dfl031">https://doi.org/10.1093/jmicro/dfl031</a></li>
<li> O.A. Balitskii, V.P. Savchyn, B. Jaeckel, and W. Jaegerman, Physica E 22, 921 (2004).&nbsp;<a href="https://doi.org/10.1016/j.physe.2003.11.198">https://doi.org/10.1016/j.physe.2003.11.198</a></li>
<li> R. Singh, S.B. Samanta, A.V. Narlikar, and G.C. Trigunayat, J. Cryst. Growth 204, 233 (1999).&nbsp;<a href="https://doi.org/10.1016/S0022-0248(99)00185-2">https://doi.org/10.1016/S0022-0248(99)00185-2</a></li>
<li> R. Singh, S.B. Samanta, A.V. Narlikar, and G.C. Trigunayat, Bull. Mater. Sci. 23, 131 (2000).&nbsp;<a href="https://doi.org/10.1007/BF02706554">https://doi.org/10.1007/BF02706554</a></li>
<li> B. Kumar and N. Sinha, Cryst. Res. Technol. 40, 887 (2005).&nbsp;<a href="https://doi.org/10.1002/crat.200410451">https://doi.org/10.1002/crat.200410451</a></li>
<li> R. Singh, S.B. Samanta, A.V. Narlikar, and G.C. Trigunayat, Surf. Sci. 422, 188 (1999).&nbsp;<a href="https://doi.org/10.1016/S0039-6028(98)00877-2">https://doi.org/10.1016/S0039-6028(98)00877-2</a></li>
<li> N.-Y. Cui, N.M.D. Brown, and A. McKinley, Appl. Surf. Sci. 152, 266 (1999).&nbsp;<a href="https://doi.org/10.1016/S0169-4332(99)00325-6">https://doi.org/10.1016/S0169-4332(99)00325-6</a></li>
<li> R. Popovitz-Biro, N. Sallacan, and R. Tenne, J. Mater. Chem. 13, 1631 (2003).&nbsp;<a href="https://doi.org/10.1039/b302505e">https://doi.org/10.1039/b302505e</a></li>
<li> N. Sallacan, R. Popovitz-Biro, and R. Tenne, Solid State Sci. 5, 905 (2003).&nbsp;<a href="https://doi.org/10.1016/S1293-2558(03)00110-9">https://doi.org/10.1016/S1293-2558(03)00110-9</a></li>
<li> I.M. Bolesta, R.I. Gryts'kiv, Yu.P. Datsyuk, and B.M. Pavlyshenko, Ukr. Fiz. Zh. 48, 1 (2003).</li>

</ol>

Published

2018-10-06

How to Cite

Bolesta, I. M., Rovetskyj, I. N., Partyka, M. V., Karbovnyk, I. D., & Kulyk, B. Y. (2018). Formation of Nanostructures on the VdW-Surface of CdI2 Crystals. Ukrainian Journal of Physics, 58(5), 490. https://doi.org/10.15407/ujpe58.05.0490

Issue

Section

Nanosystems

Most read articles by the same author(s)