Rival Mechanisms of Hysteresis in the Resistivity of Graphene Channel


  • A. I. Kurchak V.E. Lashkaryov Institute of Semiconductor Physics, Nat. Acad. of Sci. of Ukraine
  • A. N. Morozovska Institute of Physics, Nat. Acad. of Sci. of Ukraine
  • M. V. Strikha V.E. Lashkaryov Institute of Semiconductor Physics, Nat. Acad. of Sci. of Ukraine




graphene, mechanisms of hysteresis, adsorbates, surface dipoles


A model for rival mechanisms of hysteresis that appears in the dependence of the resistivity of graphene channels created on substrates of various nature on the gate voltage has been developed. Two types of hysteresis were distinguished: direct (associated with the presence of adsorbates with dipole moments on the surface and the interface) and inverse (associated with the capture of charge carriers from the graphene layer by the localized states at the interface graphene–substrate). A capability of discerning between those channels by varying the rate of gate voltage sween was discussed. A good agreement is obtained between our theoretical predictions and the experimental data available in the literature.


<li> K.S. Novoselov, A.K. Geim, S.V. Morozov et al., Science 306, 666 (2004).&nbsp;<a href="https://doi.org/10.1126/science.1102896">https://doi.org/10.1126/science.1102896</a></li>
<li> A.K. Geim, Science 324, 1530 (2009).&nbsp;<a href="https://doi.org/10.1126/science.1158877">https://doi.org/10.1126/science.1158877</a></li>
<li> M.V. Strikha. Sensor Electr. Microsyst. Technol. 3, N 9, 5 (2012).</li>
<li> Y. Zheng, G.-X. Ni, Z.-T. Toh et al., Appl. Phys. Lett. 94, 163505 (2009).&nbsp;<a href="https://doi.org/10.1063/1.3119215">https://doi.org/10.1063/1.3119215</a></li>
<li> Y. Zheng, G.-X. Ni, Z.-T. Toh et al., Phys. Rev. Lett. 105, 166602 (2010).&nbsp;<a href="https://doi.org/10.1103/PhysRevLett.105.166602">https://doi.org/10.1103/PhysRevLett.105.166602</a></li>
<li> S. Raghavan, I. Stolichnov, N. Setter et al., Appl. Phys. Lett. 100, 023507 (2012).&nbsp;<a href="https://doi.org/10.1063/1.3676055">https://doi.org/10.1063/1.3676055</a></li>
<li> J. Rouquette, J. Haines, V. Bornand et al., Phys. Rev. B 70, 014108 (2004).&nbsp;<a href="https://doi.org/10.1103/PhysRevB.70.014108">https://doi.org/10.1103/PhysRevB.70.014108</a></li>
<li> X. Hong, J. Hoffman, A. Posadas et al., Appl. Phys. Lett. 97, 033114 (2010).&nbsp;<a href="https://doi.org/10.1063/1.3467450">https://doi.org/10.1063/1.3467450</a></li>
<li> Y. Zheng, G.-X. Ni, S. Bae et al., Europhys. Lett. 93, 17002 (2011).&nbsp;<a href="https://doi.org/10.1209/0295-5075/93/17002">https://doi.org/10.1209/0295-5075/93/17002</a></li>
<li> E.B. Song, B. Lian, S.M. Kim et al., Appl. Phys. Lett. 99, 042109 (2011).&nbsp;<a href="https://doi.org/10.1063/1.3619816">https://doi.org/10.1063/1.3619816</a></li>
<li> M.V. Strikha, Ukr. J. Phys. Opt. 12, 162 (2011).&nbsp;<a href="https://doi.org/10.3116/16091833/12/4/161/2011">https://doi.org/10.3116/16091833/12/4/161/2011</a></li>
<li> M.V. Strikha, JETP Lett. 95, 198 (2012).&nbsp;<a href="https://doi.org/10.1134/S002136401204008X">https://doi.org/10.1134/S002136401204008X</a></li>
<li> A.I. Kurchak and M.V. Strikha, JETP 116, 112 (2013).&nbsp;<a href="https://doi.org/10.1134/S106377611301007X">https://doi.org/10.1134/S106377611301007X</a></li>
<li> N. Lafkioti, B. Krauss, T. Lohmann et al., Nano Lett. 10, 1149 (2010).&nbsp;<a href="https://doi.org/10.1021/nl903162a">https://doi.org/10.1021/nl903162a</a></li>
<li> H.Wang, Y.Wu, C. Cong et al., ACS Nano 4, 7221 (2010).&nbsp;<a href="https://doi.org/10.1021/nn101950n">https://doi.org/10.1021/nn101950n</a></li>
<li> S.S. Sabri, P.L. Levesque, C.M. Aguirre et al., Appl. Phys. Lett. 95, 242104 (2009).&nbsp;<a href="https://doi.org/10.1063/1.3273396">https://doi.org/10.1063/1.3273396</a></li>
<li> P.L. Levesque, S.S. Sabri, C.M. Aguirre et al., Nano Lett. 11, 132 (2011).&nbsp;<a href="https://doi.org/10.1021/nl103015w">https://doi.org/10.1021/nl103015w</a></li>
<li> A. Veligura, in Zernike Institute PhD thesis series 2012-24 (2012), p. 53.</li>
<li> S. Das Sarma, Sh. Adam, E.H. Hwang, and E. Rossi, Rev. Mod. Phys. 83, 407 (2011).&nbsp;<a href="https://doi.org/10.1103/RevModPhys.83.407">https://doi.org/10.1103/RevModPhys.83.407</a></li>
<li> Ju. Li, X. Xiao, F. Yang, M.W. Verbrugge, and Y.-T. Cheng, J. Phys. Chem. C 116, 1472 (2012).&nbsp;<a href="https://doi.org/10.1021/jp207919q">https://doi.org/10.1021/jp207919q</a></li>
<li> S.V. Kalinin and A.N. Morozovska, submitted to J. Electroceram.</li>
<li> S.H. Glarum, J. Chem. Phys. 33, 1371 (1960).&nbsp;<a href="https://doi.org/10.1063/1.1731414">https://doi.org/10.1063/1.1731414</a></li>
<li> A. Veligura, P.J. Zomer, I.J. Vera-Marun et al., J. Appl. Phys. 110, 113708 (2011).&nbsp;<a href="https://doi.org/10.1063/1.3665196">https://doi.org/10.1063/1.3665196</a></li>



How to Cite

Kurchak, A. I., Morozovska, A. N., & Strikha, M. V. (2018). Rival Mechanisms of Hysteresis in the Resistivity of Graphene Channel. Ukrainian Journal of Physics, 58(5), 472. https://doi.org/10.15407/ujpe58.05.0472



Solid matter