Electronic Properties of Functionalized Graphene Nanoribbons

  • R. M. Balabai Kryvyi-Rih Pedagogical Institute, Kryvyi-Rih National University, Department of Physics
Keywords: graphene nanoribbons, electron density functional method, pseudopotential method

Abstract

Distributions of valence electron density in and the electron energy spectrum of graphene nanoribbons covered with hydrogen, fluorine, or oxygen atoms have been calculated ab initio in the framework of the density functional and pseudopotential theories. The emergence of a forbidden gap for graphene nanoribbons with zigzag edges and 9.23 ˚ A in width and its absence in an unconfined graphene plane are shown. The forbidden gap is demonstrated to decrease, as the graphene nanoribbon width increases. For graphene nanoribbons with hydrogen-decorated edges, the energy gap disappears. The interaction between a hydrogen atom and carbon atoms in the graphene nanoribbon plane that are coordinated in accordance with the sp2-hybridization is shown to induce local changes of the hybridization to the sp3 type.

References


  1. Y.-W. Son, M.L. Cohen, and S.G. Louie, Nature 444, 347 (2006). https://doi.org/10.1038/nature05180

  2. H. Raza, J. Phys. Condens. Matter 23, 382203 (2011). https://doi.org/10.1088/0953-8984/23/38/382203

  3. A. Dasgupta, S. Bera, F. Evers, and M.J. van Setten, Phys. Rev. B 85, 125433 (2012). https://doi.org/10.1103/PhysRevB.85.125433

  4. H. Karamitaheri, N. Neophytou, M. Pourfath, R. Faez, and H. Kosina, J. Appl. Phys. 111, 054501 (2012). https://doi.org/10.1063/1.3688034

  5. P. Wagner, C.P. Ewels, V.V. Ivanovskaya, P.R. Briddon, A. Pateau, and B. Humbert, Phys. Rev. B 84, 134110 (2011). https://doi.org/10.1103/PhysRevB.84.134110

  6. L.T. Nguyen et al., J. Phys. Condens. Matter 23, 295503 (2011). https://doi.org/10.1088/0953-8984/23/29/295503

  7. A. Javey, Carbon Nanotube Electronics (Springer, New York, 2009).

  8. M.Y. Han, B. Ozylmaz, Y. Zhang, and P. Kim, Phys. Rev. Lett. 98, 206805 (2007). https://doi.org/10.1103/PhysRevLett.98.206805

  9. C. Jeong, P. Nair, M. Khan, M. Lundstrom, and M.A. Alam, Nano Lett. 11, 5020 (2011). https://doi.org/10.1021/nl203041n

  10. K. Wakabayashi, M. Fujita, H. Ajiki, and M. Sigrist, Phys. Rev. B 59, 8271 (1999). https://doi.org/10.1103/PhysRevB.59.8271

  11. J. Cai, P. Ruffieux, R. Jaafar, M. Bieri, T. Braun, S. Blankenburg, M. Muoth, A.P. Seitsonen, M. Saleh, X. Feng, K. Muellen, and R. Fasel, Nature 466, 470 (2010). https://doi.org/10.1038/nature09211

  12. R.M. Balabai and N.V. Grishchenko, Fotoelektronika 8, 25 (1998).

  13. R.M. Balabai, First-Principles Computational Methods in Solid State Physics: The Quantum-Mechanical Molecular Dynamics (Vydavnychyi Dim, Kryvyi Rih, 2009) (in Ukrainian).

  14. D.W. Boukhvalov and M.I. Katsnelson, J. Phys. Condens. Matter 21, 344205 (2009). https://doi.org/10.1088/0953-8984/21/34/344205

  15. V. Litovchenko, Ukr. Fiz. Zh. 42, 228 (1997).

  16. V.G. Litovchenko, M.V. Strikha, and N.I. Klyui, Ukr. Fiz. Zh. 56, 178 (2011).

  17. R.M. Balabai and D.V. Ryabchikov, Sensor. Elektron. Mikrosyst. Tekhnol. 2, N 8, 13 (2011).

  18. M.M. Brzhezinskaya, A.S. Vinogradov, A.V. Krestinin, A.P. Kharitonov et al., Fiz. Tverd. Tela 52, 819 (2010).

Published
2018-10-06
How to Cite
Balabai, R. (2018). Electronic Properties of Functionalized Graphene Nanoribbons. Ukrainian Journal of Physics, 58(4), 389. https://doi.org/10.15407/ujpe58.04.0389
Section
Nanosystems