Percolation Properties of Systems Based on Polypropylene Glycol and Carbon Nanotubes

  • E. A. Lysenkov Institute of Macromolecular Chemistry, Nat. Acad. of Sci. of Ukraine, V.O. Sukhomlyns’kiy Mykolaiv National University
  • Yu. V. Yakovlev Institute of Macromolecular Chemistry, Nat. Acad. of Sci. of Ukraine
  • V. V. Klepko Institute of Macromolecular Chemistry, Nat. Acad. of Sci. of Ukraine
Keywords: impedance spectroscopy research, percolation threshold, carbon nanotubes

Abstract

Impedance spectroscopy researches have been carried out for the electric and dielectric properties of systems based on polypropylene glycol and carbon nanotubes. The fractal behavior of those systems was revealed. The corresponding percolation threshold of 0.45% was found. The critical index of conductivity t = 1.43 was determined in the framework of the scaling approach. The processes of charge transfer in the systems concerned were found to be described well by the intercluster polarization model.

References


  1. D. Stauffer and A. Aharony, Introduction to Percolation Theory (Taylor and Francis, London, 1994).

  2. Z. Chen, Encycl. Nanosci. Nanotech. 7, 919 (2004).

  3. J. Zhang, M. Mine, D. Zhu, and M. Matsuo, Carbon 47, 1311 (2009). https://doi.org/10.1016/j.carbon.2009.01.014

  4. J.K.W. Sandler, J.E. Kirk, I.A. Kinloch, M.S.P. Shaffer, and A.H. Windle, Polymer 44, 5893 (2003). https://doi.org/10.1016/S0032-3861(03)00539-1

  5. A. Mierczynska, M. Mayne-L'Hermite, and G. Boiteux, J. Appl. Polym. Sci. 105, 158 (2007). https://doi.org/10.1002/app.26044

  6. S. McCullen, D. Stevens, W. Roberts, S. Ojha, L. Clarke, and R. Gorga, Macromolecules 40, 997 (2007). https://doi.org/10.1021/ma061735c

  7. A.V. Melezhyk, Yu.I. Sementsov, and V.V. Yanchenko, Russ. J. Appl. Chem. 78, 971 (2005). https://doi.org/10.1007/s11167-005-0430-9

  8. A. Kyritsis, P. Pissis, and J. Grammatikakis, J. Polym. Sci. B 33, 1737 (1995). https://doi.org/10.1002/polb.1995.090331205

  9. S. Kirkpatrick, Phys. Rev. Lett. 27, 1722 (1971). https://doi.org/10.1103/PhysRevLett.27.1722

  10. I. Webman, J. Jortner, and M.H. Cohen, Phys. Rev. B 16, 2593 (1977). https://doi.org/10.1103/PhysRevB.16.2593

  11. L. Wang and Z.M. Dang, Appl. Phys. Lett. 87, 42903 (2005). https://doi.org/10.1063/1.1996842

  12. V. Antonucci, G. Faiella, M. Giordano, L. Nicolais, and G. Pepe, Macromol. Symp. 247, 172 (2007). https://doi.org/10.1002/masy.200750120

  13. D.M. Grannan, J.C. Garland, and D.B. Tanner, Phys. Rev. Lett. 46, 375 (1981). https://doi.org/10.1103/PhysRevLett.46.375

  14. B. Kilbride, J. Coleman, J. Fraysse, P. Fournet, M. Cadek, A. Drury, S. Hutzler, S. Roth, and W.J. Blau, J. Appl. Phys. 92, 4024 (2002). https://doi.org/10.1063/1.1506397

  15. D.J. Bergman and Y. Imry, Phys. Rev. Lett. 39, 1222 (1997). https://doi.org/10.1103/PhysRevLett.39.1222

  16. Y. Gefen, A. Aharony, and S. Alexander, Phys. Rev. Lett. 50, 77 (1983). https://doi.org/10.1103/PhysRevLett.50.77

  17. Y. Song, T.W. Noh, S.I. Lee, and J.R. Gaines, Phys. Rev. B 33, 904 (1986). https://doi.org/10.1103/PhysRevB.33.904

  18. D. Wilkinson, J.S. Langer, and P.N Sen, Phys. Rev. B 28, 1081 (1983). https://doi.org/10.1103/PhysRevB.28.1081

  19. A.B. Harris, Phys. Rev. B 28, 2614 (1983). https://doi.org/10.1103/PhysRevB.28.2614

  20. J. Wu and D.S. McLachlan, Phys. Rev. B 58, 14880 (1998). https://doi.org/10.1103/PhysRevB.58.14880

  21. M.E. Achour, C. Brosseau, and F. Carmona, J. Appl. Phys. 103, 094103 (2008). https://doi.org/10.1063/1.2912985

Published
2018-10-06
How to Cite
Lysenkov, E., Yakovlev, Y., & Klepko, V. (2018). Percolation Properties of Systems Based on Polypropylene Glycol and Carbon Nanotubes. Ukrainian Journal of Physics, 58(4), 378. https://doi.org/10.15407/ujpe58.04.0378
Section
Nanosystems