Percolation Properties of Systems Based on Polypropylene Glycol and Carbon Nanotubes

Authors

  • E. A. Lysenkov Institute of Macromolecular Chemistry, Nat. Acad. of Sci. of Ukraine, V.O. Sukhomlyns’kiy Mykolaiv National University
  • Yu. V. Yakovlev Institute of Macromolecular Chemistry, Nat. Acad. of Sci. of Ukraine
  • V. V. Klepko Institute of Macromolecular Chemistry, Nat. Acad. of Sci. of Ukraine

DOI:

https://doi.org/10.15407/ujpe58.04.0378

Keywords:

impedance spectroscopy research, percolation threshold, carbon nanotubes

Abstract

Impedance spectroscopy researches have been carried out for the electric and dielectric properties of systems based on polypropylene glycol and carbon nanotubes. The fractal behavior of those systems was revealed. The corresponding percolation threshold of 0.45% was found. The critical index of conductivity t = 1.43 was determined in the framework of the scaling approach. The processes of charge transfer in the systems concerned were found to be described well by the intercluster polarization model.

References

<ol>
<li> D. Stauffer and A. Aharony, Introduction to Percolation Theory (Taylor and Francis, London, 1994).</li>
<li> Z. Chen, Encycl. Nanosci. Nanotech. 7, 919 (2004).</li>
<li> J. Zhang, M. Mine, D. Zhu, and M. Matsuo, Carbon 47, 1311 (2009).&nbsp;<a href="https://doi.org/10.1016/j.carbon.2009.01.014">https://doi.org/10.1016/j.carbon.2009.01.014</a></li>
<li> J.K.W. Sandler, J.E. Kirk, I.A. Kinloch, M.S.P. Shaffer, and A.H. Windle, Polymer 44, 5893 (2003).&nbsp;<a href="https://doi.org/10.1016/S0032-3861(03)00539-1">https://doi.org/10.1016/S0032-3861(03)00539-1</a></li>
<li> A. Mierczynska, M. Mayne-L'Hermite, and G. Boiteux, J. Appl. Polym. Sci. 105, 158 (2007).&nbsp;<a href="https://doi.org/10.1002/app.26044">https://doi.org/10.1002/app.26044</a></li>
<li> S. McCullen, D. Stevens, W. Roberts, S. Ojha, L. Clarke, and R. Gorga, Macromolecules 40, 997 (2007).&nbsp;<a href="https://doi.org/10.1021/ma061735c">https://doi.org/10.1021/ma061735c</a></li>
<li> A.V. Melezhyk, Yu.I. Sementsov, and V.V. Yanchenko, Russ. J. Appl. Chem. 78, 971 (2005).&nbsp;<a href="https://doi.org/10.1007/s11167-005-0430-9">https://doi.org/10.1007/s11167-005-0430-9</a></li>
<li> A. Kyritsis, P. Pissis, and J. Grammatikakis, J. Polym. Sci. B 33, 1737 (1995).&nbsp;<a href="https://doi.org/10.1002/polb.1995.090331205">https://doi.org/10.1002/polb.1995.090331205</a></li>
<li> S. Kirkpatrick, Phys. Rev. Lett. 27, 1722 (1971).&nbsp;<a href="https://doi.org/10.1103/PhysRevLett.27.1722">https://doi.org/10.1103/PhysRevLett.27.1722</a></li>
<li> I. Webman, J. Jortner, and M.H. Cohen, Phys. Rev. B 16, 2593 (1977).&nbsp;<a href="https://doi.org/10.1103/PhysRevB.16.2593">https://doi.org/10.1103/PhysRevB.16.2593</a></li>
<li> L. Wang and Z.M. Dang, Appl. Phys. Lett. 87, 42903 (2005).&nbsp;<a href="https://doi.org/10.1063/1.1996842">https://doi.org/10.1063/1.1996842</a></li>
<li> V. Antonucci, G. Faiella, M. Giordano, L. Nicolais, and G. Pepe, Macromol. Symp. 247, 172 (2007).&nbsp;<a href="https://doi.org/10.1002/masy.200750120">https://doi.org/10.1002/masy.200750120</a></li>
<li> D.M. Grannan, J.C. Garland, and D.B. Tanner, Phys. Rev. Lett. 46, 375 (1981).&nbsp;<a href="https://doi.org/10.1103/PhysRevLett.46.375">https://doi.org/10.1103/PhysRevLett.46.375</a></li>
<li> B. Kilbride, J. Coleman, J. Fraysse, P. Fournet, M. Cadek, A. Drury, S. Hutzler, S. Roth, and W.J. Blau, J. Appl. Phys. 92, 4024 (2002).&nbsp;<a href="https://doi.org/10.1063/1.1506397">https://doi.org/10.1063/1.1506397</a></li>
<li> D.J. Bergman and Y. Imry, Phys. Rev. Lett. 39, 1222 (1997).&nbsp;<a href="https://doi.org/10.1103/PhysRevLett.39.1222">https://doi.org/10.1103/PhysRevLett.39.1222</a></li>
<li> Y. Gefen, A. Aharony, and S. Alexander, Phys. Rev. Lett. 50, 77 (1983).&nbsp;<a href="https://doi.org/10.1103/PhysRevLett.50.77">https://doi.org/10.1103/PhysRevLett.50.77</a></li>
<li> Y. Song, T.W. Noh, S.I. Lee, and J.R. Gaines, Phys. Rev. B 33, 904 (1986).&nbsp;<a href="https://doi.org/10.1103/PhysRevB.33.904">https://doi.org/10.1103/PhysRevB.33.904</a></li>
<li> D. Wilkinson, J.S. Langer, and P.N Sen, Phys. Rev. B 28, 1081 (1983).&nbsp;<a href="https://doi.org/10.1103/PhysRevB.28.1081">https://doi.org/10.1103/PhysRevB.28.1081</a></li>
<li> A.B. Harris, Phys. Rev. B 28, 2614 (1983).&nbsp;<a href="https://doi.org/10.1103/PhysRevB.28.2614">https://doi.org/10.1103/PhysRevB.28.2614</a></li>
<li> J. Wu and D.S. McLachlan, Phys. Rev. B 58, 14880 (1998).&nbsp;<a href="https://doi.org/10.1103/PhysRevB.58.14880">https://doi.org/10.1103/PhysRevB.58.14880</a></li>
<li> M.E. Achour, C. Brosseau, and F. Carmona, J. Appl. Phys. 103, 094103 (2008).&nbsp;<a href="https://doi.org/10.1063/1.2912985">https://doi.org/10.1063/1.2912985</a></li>
</ol>

Published

2018-10-06

How to Cite

Lysenkov, E. A., Yakovlev, Y. V., & Klepko, V. V. (2018). Percolation Properties of Systems Based on Polypropylene Glycol and Carbon Nanotubes. Ukrainian Journal of Physics, 58(4), 378. https://doi.org/10.15407/ujpe58.04.0378

Issue

Section

Nanosystems

Most read articles by the same author(s)