Effects of Variable Fluid Properties on Unsteady Heat Transfer over a Stretching Surface in the Presence of Thermal Radiation


  • M. F. Dimian Department of Mathematics, Ain Shams University, Faculty of Science
  • A. M. Megahed Department of Mathematics, Faculty of Science




variable properties, thermal radiation, unsteady stretching sheet, Chebyshev spectral method


The effect of radiation on the unsteady flow over a stretching surface with variable viscosity and variable thermal conductivity is analyzed. Similar governing equations are obtained by using suitable transformations and are then solved by applying the Chebyshev spectral method. Numerical results for the dimensionless velocity profiles and the dimensionless temperature are graphically presented for various values of the radiation parameter, viscosity, thermal
conductivity, space and time indices, Prandtl number, and unsteadiness parameter. It is shown that both the skin friction and the rate of heat transfer decrease, as the Prandtl number and the unsteadiness parameter decrease. But both decrease, as the radiation parameter increases. The dimensionless temperature increases with the radiation parameter and the viscosity, but it decreases as the space and time indices increase.


<li> E.M. Sparrow and J.I. Gregg, ASME J. Heat Transfer 81, 13 (1959).</li>
<li> B.S. Dandapat and P.C. Ray, Int. J. Non-Linear Mech. 25, 569 (1990).&nbsp;<a href="https://doi.org/10.1016/0020-7462(90)90019-6">https://doi.org/10.1016/0020-7462(90)90019-6</a></li>
<li> B.S. Dandapat and P.C. Ray, J. Phys. D. Appl. Phys. 27, 2041 (1994).&nbsp;<a href="https://doi.org/10.1088/0022-3727/27/10/009">https://doi.org/10.1088/0022-3727/27/10/009</a></li>
<li> M. E. Ali, Warme- und Stoff. 29, 227 (1994).</li>
<li> L.J. Crane, Z. Angew Math. Phys. 21, 645 (1970).&nbsp;<a href="https://doi.org/10.1007/BF01587695">https://doi.org/10.1007/BF01587695</a></li>
<li> P.S. Gupta and A.S. Gupta, Can. J. Chem. Eng. 55, 744 (1977).&nbsp;<a href="https://doi.org/10.1002/cjce.5450550619">https://doi.org/10.1002/cjce.5450550619</a></li>
<li> F.K. Tsou, E.M. Sparrow, and R.J. Goldstein, Int. J. Heat Mass Transfer 10, 219 (1967).&nbsp;<a href="https://doi.org/10.1016/0017-9310(67)90100-7">https://doi.org/10.1016/0017-9310(67)90100-7</a></li>
<li> V.M. Soundalgekar and T.V. Ramana Murty, Warme- und Stoff. 14, 91 (1980).</li>
<li> L.J. Grubka and K.M. Bobba, AME J. Heat Transfer 107, 248 (1985).&nbsp;<a href="https://doi.org/10.1115/1.3247387">https://doi.org/10.1115/1.3247387</a></li>
<li> B.C. Sakiadis, A.I.Ch.E. Journ. 7, 26 (1961).</li>
<li> E. Magyari and B. Keller, J. Phys. D. Appl. Phys. 32, 2876 (1999).&nbsp;<a href="https://doi.org/10.1088/0022-3727/32/22/308">https://doi.org/10.1088/0022-3727/32/22/308</a></li>
<li> W.H.H. Banks, J. Mec. Theor. Appl. 2, 375 (1983).</li>
<li> M.E. Ali, Int. J. Heat Fluid Flow 16, 280 (1995).&nbsp;<a href="https://doi.org/10.1016/0142-727X(95)00001-7">https://doi.org/10.1016/0142-727X(95)00001-7</a></li>
<li> E.M. Abo-Eldahab and M.S. Elgendy, Phys. Scripta 62, 321 (2000).&nbsp;<a href="https://doi.org/10.1238/Physica.Regular.062a00321">https://doi.org/10.1238/Physica.Regular.062a00321</a></li>
<li> E.M.A. Elbashbeshy and M.A.A. Bazid, Appl. Math. Comp. 138, 239 (2003).&nbsp;<a href="https://doi.org/10.1016/S0096-3003(02)00106-6">https://doi.org/10.1016/S0096-3003(02)00106-6</a></li>
<li> H.I. Andersson, J.B. Aarseth, and B.S. Dandapat, Int. J. Heat Mass Transfer 43, 69 (2000).&nbsp;<a href="https://doi.org/10.1016/S0017-9310(99)00123-4">https://doi.org/10.1016/S0017-9310(99)00123-4</a></li>
<li> E.M.A. Elbashbeshy and M.F. Dimian, J. Appl. Math. and Comput. 132, 445 (2002).&nbsp;<a href="https://doi.org/10.1016/S0096-3003(01)00205-3">https://doi.org/10.1016/S0096-3003(01)00205-3</a></li>
<li> M.A. Hassain, M.A. Alin, and D.A.S. Rees, Int. J. Heat Mass Transfer 42, 181 (1999).&nbsp;<a href="https://doi.org/10.1016/S0017-9310(98)00097-0">https://doi.org/10.1016/S0017-9310(98)00097-0</a></li>
<li> E.F. Elshehawey, M.A. Kamel, and F.N. Ibrahim, Engin. Trans. (Polish Acad. Sci.) 33, 299 (1985).</li>
<li> E.M.A. Elbashbeshy and D.A. Aldawody, Int. J. of Nonlinear Science 9, 448 (2010).</li>
<li> R.C. Bataller, Int. J. Heat Mass Transfer 50, 3152 (2007).&nbsp;<a href="https://doi.org/10.1016/j.ijheatmasstransfer.2007.01.003">https://doi.org/10.1016/j.ijheatmasstransfer.2007.01.003</a></li>
<li> M.A.A. Mahmoud and A.M. Megahed, Can. J. Phys. 87, 1065 (2009).&nbsp;<a href="https://doi.org/10.1139/P09-066">https://doi.org/10.1139/P09-066</a></li>
<li> A. Raptis, Int. J. Heat Mass Transfer 41, 2865 (1998).&nbsp;<a href="https://doi.org/10.1016/S0017-9310(98)00006-4">https://doi.org/10.1016/S0017-9310(98)00006-4</a></li>
<li> A. Raptis, Int. Comm. Heat Mass Transfer 26, 889 (1999).&nbsp;<a href="https://doi.org/10.1016/S0735-1933(99)00077-9">https://doi.org/10.1016/S0735-1933(99)00077-9</a></li>
<li> S.E. El-Gendi, Computer J. 12, 282 (1969).&nbsp;<a href="https://doi.org/10.1093/comjnl/12.3.282">https://doi.org/10.1093/comjnl/12.3.282</a></li>




How to Cite

Dimian, M. F., & Megahed, A. M. (2018). Effects of Variable Fluid Properties on Unsteady Heat Transfer over a Stretching Surface in the Presence of Thermal Radiation. Ukrainian Journal of Physics, 58(4), 345. https://doi.org/10.15407/ujpe58.04.0345



Soft matter