Filamentation of Femtosecond Vortex Beam in Sapphire

Authors

  • I. V. Blonskyi Institute of Physics, Nat. Acad. of Sci. of Ukraine
  • V. M. Kadan Institute of Physics, Nat. Acad. of Sci. of Ukraine
  • A. A. Dergachev Department of Physics and International Laser Center, M.V. Lomonosov Moscow State University
  • S. A. Shlenov Department of Physics and International Laser Center, M.V. Lomonosov Moscow State University
  • V. P. Kandidov Department of Physics and International Laser Center, M.V. Lomonosov Moscow State University
  • V. M. Puzikov Institute for Single Crystals, Nat. Acad. of Sci. of Ukraine
  • L. O. Grin’ Institute for Single Crystals, Nat. Acad. of Sci. of Ukraine

DOI:

https://doi.org/10.15407/ujpe58.04.0341

Keywords:

filamentation, femtosecond, vortex beams, topological charge

Abstract

Filamentation of powerful femtosecond beams with a vortex of the topological charge l = 2 in sapphire is studied. A method to control the azimuthal position of filaments by changing the phase difference between two coherent co-axial beams, vortex and vortex-free reference ones, is proposed and demonstrated. The observed misalignment between the paths of filaments generated by the vortex and vortex-free beams, when they cross at a small angle is explained in terms of the spiral propagation of filaments around the vortex optical axis.

References

<ol>
<li> J.F. Nye and M.V. Berry, Proc. R. Soc. Lond. A 336, 165 (1974).&nbsp;<a href="https://doi.org/10.1098/rspa.1974.0012">https://doi.org/10.1098/rspa.1974.0012</a></li>
<li> M.S. Soskin and M.V. Vasnetsov, in Progress in Optics, edited by E. Wolf, (Elsevier, Amsterdam, 2001), p. 219.</li>
<li> M. Vasnetsov and K. Staliunas, Optical Vortices (Nova Science, New York, 1999).</li>
<li> M.S. Soskin, V.N. Gorshkov, M.V. Vasnetsov, J.T. Malos, and N.R. Heckenberg, Phys. Rev. A 56, 4064 (1997).&nbsp;<a href="https://doi.org/10.1103/PhysRevA.56.4064">https://doi.org/10.1103/PhysRevA.56.4064</a></li>
<li> M. Vasnetsov, V. Pas'ko, A. Khoroshun, V. Slyusar, and M. Soskin, Opt. Lett. 32, 1830 (2007).&nbsp;<a href="https://doi.org/10.1364/OL.32.001830">https://doi.org/10.1364/OL.32.001830</a></li>
<li> M. Soskin, M. Vasnetsov, V. Denisenko, and V. Slyusar, New Directions in Holography and Speckles (Amer. Sci. Publ., New York, 2008).</li>
<li> D.L.Andrews, Structured Light and Its Applications, (Academic Press, San Diego, CA, 2008).</li>
<li> G. Gibson, J. Courtial, M. Padgett, M. Vasnetsov, V. Pas'ko, S. Barnett, and S. Franke-Arnold, Opt. Express 12, 5448 (2004).&nbsp;<a href="https://doi.org/10.1364/OPEX.12.005448">https://doi.org/10.1364/OPEX.12.005448</a></li>
<li> M.S. Bigelow, P. Zerom, and R.W. Boyd, Phys. Rev. Lett. 92, 083902 (2004).&nbsp;<a href="https://doi.org/10.1103/PhysRevLett.92.083902">https://doi.org/10.1103/PhysRevLett.92.083902</a></li>
<li> D.N. Neshev, A. Dreischuh, G. Maleshkov, M. Samoc, and Y.S. Kivshar, Opt. Express 18, 18368 (2010).&nbsp;<a href="https://doi.org/10.1364/OE.18.018368">https://doi.org/10.1364/OE.18.018368</a></li>
<li> P. Hansinger, A. Dreischuh, and G.G. Paulus, Appl. Phys. B 104, 561 (2011).&nbsp;<a href="https://doi.org/10.1007/s00340-011-4649-2">https://doi.org/10.1007/s00340-011-4649-2</a></li>
<li> T.D. Grow, A. Ishaaya, A.L. Gaeta, G. Fibich, G.W. 't Hooft, and E.R. Eliel, Phys. Rev. Lett. 96, 133901 (2006).&nbsp;<a href="https://doi.org/10.1103/PhysRevLett.96.133901">https://doi.org/10.1103/PhysRevLett.96.133901</a></li>
<li> S. Shiffler, P. Polynkin, and J. Moloney, Opt. Lett. 36, 3834 (2011).&nbsp;<a href="https://doi.org/10.1364/OL.36.003834">https://doi.org/10.1364/OL.36.003834</a></li>
<li> O. Khasanov, T. Smirnova, O. Fedotova, G. Rusetsky, and O. Romanov, Appl. Opt. 51, C198 (2012).&nbsp;<a href="https://doi.org/10.1364/AO.51.00C198">https://doi.org/10.1364/AO.51.00C198</a></li>
<li> A. Vin¸cotte and L. Berg’e, Phys. Rev. Lett. 95, 193901 (2005).&nbsp;<a href="https://doi.org/10.1103/PhysRevLett.95.193901">https://doi.org/10.1103/PhysRevLett.95.193901</a></li>
<li> V.G. Shvedov, C. Hnatovsky, W. Krolikowski, and A.V. Rode, Opt. Lett. 35, 2660 (2010).&nbsp;<a href="https://doi.org/10.1364/OL.35.002660">https://doi.org/10.1364/OL.35.002660</a></li>
<li> A.A. Dergachev, V.N. Kadan, and S.A. Shlyonov, Kvant. Elektron. 42, 125 (2012).&nbsp;<a href="https://doi.org/10.1070/QE2012v042n02ABEH014751">https://doi.org/10.1070/QE2012v042n02ABEH014751</a></li>
<li> A. Couairon and A. Mysyrowicz, Phys. Rep. 441, 47 (2007).&nbsp;<a href="https://doi.org/10.1016/j.physrep.2006.12.005">https://doi.org/10.1016/j.physrep.2006.12.005</a></li>
<li> Ting-Ting Xi, Xin Lu, and Jie Zhang, Phys. Rev. Lett. 96, 025003 (2006).&nbsp;<a href="https://doi.org/10.1103/PhysRevLett.96.025003">https://doi.org/10.1103/PhysRevLett.96.025003</a></li>
</ol>

Published

2018-10-06

How to Cite

Blonskyi, I. V., Kadan, V. M., Dergachev, A. A., Shlenov, S. A., Kandidov, V. P., Puzikov, V. M., & Grin’, L. O. (2018). Filamentation of Femtosecond Vortex Beam in Sapphire. Ukrainian Journal of Physics, 58(4), 341. https://doi.org/10.15407/ujpe58.04.0341

Issue

Section

Optics, lasers, and quantum electronics