Filamentation of Femtosecond Vortex Beam in Sapphire

  • I. V. Blonskyi Institute of Physics, Nat. Acad. of Sci. of Ukraine
  • V. M. Kadan Institute of Physics, Nat. Acad. of Sci. of Ukraine
  • A. A. Dergachev Department of Physics and International Laser Center, M.V. Lomonosov Moscow State University
  • S. A. Shlenov Department of Physics and International Laser Center, M.V. Lomonosov Moscow State University
  • V. P. Kandidov Department of Physics and International Laser Center, M.V. Lomonosov Moscow State University
  • V. M. Puzikov Institute for Single Crystals, Nat. Acad. of Sci. of Ukraine
  • L. O. Grin’ Institute for Single Crystals, Nat. Acad. of Sci. of Ukraine
Keywords: filamentation, femtosecond, vortex beams, topological charge

Abstract

Filamentation of powerful femtosecond beams with a vortex of the topological charge l = 2 in sapphire is studied. A method to control the azimuthal position of filaments by changing the phase difference between two coherent co-axial beams, vortex and vortex-free reference ones, is proposed and demonstrated. The observed misalignment between the paths of filaments generated by the vortex and vortex-free beams, when they cross at a small angle is explained in terms of the spiral propagation of filaments around the vortex optical axis.

References


  1. J.F. Nye and M.V. Berry, Proc. R. Soc. Lond. A 336, 165 (1974). https://doi.org/10.1098/rspa.1974.0012

  2. M.S. Soskin and M.V. Vasnetsov, in Progress in Optics, edited by E. Wolf, (Elsevier, Amsterdam, 2001), p. 219.

  3. M. Vasnetsov and K. Staliunas, Optical Vortices (Nova Science, New York, 1999).

  4. M.S. Soskin, V.N. Gorshkov, M.V. Vasnetsov, J.T. Malos, and N.R. Heckenberg, Phys. Rev. A 56, 4064 (1997). https://doi.org/10.1103/PhysRevA.56.4064

  5. M. Vasnetsov, V. Pas'ko, A. Khoroshun, V. Slyusar, and M. Soskin, Opt. Lett. 32, 1830 (2007). https://doi.org/10.1364/OL.32.001830

  6. M. Soskin, M. Vasnetsov, V. Denisenko, and V. Slyusar, New Directions in Holography and Speckles (Amer. Sci. Publ., New York, 2008).

  7. D.L.Andrews, Structured Light and Its Applications, (Academic Press, San Diego, CA, 2008).

  8. G. Gibson, J. Courtial, M. Padgett, M. Vasnetsov, V. Pas'ko, S. Barnett, and S. Franke-Arnold, Opt. Express 12, 5448 (2004). https://doi.org/10.1364/OPEX.12.005448

  9. M.S. Bigelow, P. Zerom, and R.W. Boyd, Phys. Rev. Lett. 92, 083902 (2004). https://doi.org/10.1103/PhysRevLett.92.083902

  10. D.N. Neshev, A. Dreischuh, G. Maleshkov, M. Samoc, and Y.S. Kivshar, Opt. Express 18, 18368 (2010). https://doi.org/10.1364/OE.18.018368

  11. P. Hansinger, A. Dreischuh, and G.G. Paulus, Appl. Phys. B 104, 561 (2011). https://doi.org/10.1007/s00340-011-4649-2

  12. T.D. Grow, A. Ishaaya, A.L. Gaeta, G. Fibich, G.W. 't Hooft, and E.R. Eliel, Phys. Rev. Lett. 96, 133901 (2006). https://doi.org/10.1103/PhysRevLett.96.133901

  13. S. Shiffler, P. Polynkin, and J. Moloney, Opt. Lett. 36, 3834 (2011). https://doi.org/10.1364/OL.36.003834

  14. O. Khasanov, T. Smirnova, O. Fedotova, G. Rusetsky, and O. Romanov, Appl. Opt. 51, C198 (2012). https://doi.org/10.1364/AO.51.00C198

  15. A. Vin¸cotte and L. Berg’e, Phys. Rev. Lett. 95, 193901 (2005). https://doi.org/10.1103/PhysRevLett.95.193901

  16. V.G. Shvedov, C. Hnatovsky, W. Krolikowski, and A.V. Rode, Opt. Lett. 35, 2660 (2010). https://doi.org/10.1364/OL.35.002660

  17. A.A. Dergachev, V.N. Kadan, and S.A. Shlyonov, Kvant. Elektron. 42, 125 (2012). https://doi.org/10.1070/QE2012v042n02ABEH014751

  18. A. Couairon and A. Mysyrowicz, Phys. Rep. 441, 47 (2007). https://doi.org/10.1016/j.physrep.2006.12.005

  19. Ting-Ting Xi, Xin Lu, and Jie Zhang, Phys. Rev. Lett. 96, 025003 (2006). https://doi.org/10.1103/PhysRevLett.96.025003

Published
2018-10-06
How to Cite
Blonskyi, I., Kadan, V., Dergachev, A., Shlenov, S., Kandidov, V., Puzikov, V., & Grin’, L. (2018). Filamentation of Femtosecond Vortex Beam in Sapphire. Ukrainian Journal of Physics, 58(4), 341. https://doi.org/10.15407/ujpe58.04.0341
Section
Optics, lasers, and quantum electronics