Ion Drag Force on a Charged Macroparticle in Collisionless Plasma

  • I. L. Semenov E.O. Paton Electric Welding Institute
Keywords: ion drag force, collisionless plasma, binary collision approach

Abstract

The problem of calculating the ion drag force acting on a charged macroparticle in collisionless flowing plasma is studied by using an approach based on the direct numerical solution of the Vlasov kinetic equations for plasma components. A uniform plasma flow past a spherical macroparticle is considered. The computations are carried out for different particle sizes and different flow velocities. On the basis of the obtained results the effect of particle size on the ion drag force is analyzed. It is shown that when the particle size is much less than the Debye length in plasma, the ion drag force can be calculated with good accuracy by means of the conventional binary collision approach. A modified version of the binary collision approach is proposed to calculate the ion drag force in the case where the particle size becomes comparable to the Debye length in plasma. It is shown that there is a reasonable agreement between the results obtained using the numerical solution of the kinetic equations and that obtained by the modified binary collision approach.

References


  1. M.S. Barnes, J.H. Keller, J.C. Forster, J.A. O'Neill, and D.K. Coultas, Phys. Rev. Lett. 68, 313 (1992). https://doi.org/10.1103/PhysRevLett.68.313

  2. G.E. Morfill, H.M. Thomas, U. Konopka, H. Rothermel, M. Zuzic, A. Ivlev, and J. Goree, Phys. Rev. Lett. 83, 1598 (1999). https://doi.org/10.1103/PhysRevLett.83.1598

  3. S.V. Vladimirov and N.F. Cramer, Phys. Rev. E 62, 2754 (2000). https://doi.org/10.1103/PhysRevE.62.2754

  4. N. D'Angelo, Phys. Plasmas 5, 3155 (1998). https://doi.org/10.1063/1.873042

  5. A.V. Ivlev, D. Samsonov, J. Goree, G. Morfill, and V.E. Fortov, Phys. Plasmas 6, 741 (1999). https://doi.org/10.1063/1.873311

  6. S.A. Khrapak and V.V. Yaroshenko, Phys. Plasmas 10, 4616 (2003). https://doi.org/10.1063/1.1621398

  7. V.N. Tsytovich, Phys. Usp. 40, 53 (1997). https://doi.org/10.1070/PU1997v040n01ABEH000201

  8. S.A. Khrapak, A. Ivlev, and G. Morfill, Phys. Rev. E 64, 046403 (2001). https://doi.org/10.1103/PhysRevE.64.046403

  9. S.A. Khrapak, S.K. Zhdanov, A.V. Ivlev, and G.E. Morfill, J. Appl. Phys. 101, 033307 (2007). https://doi.org/10.1063/1.2464187

  10. L. Patacchini and I.H. Hutchinson, Phys. Rev. Lett. 101, 025001 (2008). https://doi.org/10.1103/PhysRevLett.101.025001

  11. A.V. Filippov, A.G. Zagorodny, A.I. Momot, A.F. Pal', and A.N. Starostin, JETP 108, 497 (2009). https://doi.org/10.1134/S1063776109030145

  12. M.D. Kilgore, J.E. Daugherty, R.K. Porteous, and D.B. Graves, J. Appl. Phys. 73, 7195 (1993). https://doi.org/10.1063/1.352392

  13. S.A. Khrapak, A.V. Ivlev, G.E. Morfill, and H.M. Thomas, Phys. Rev. E 66, 046414 (2002). https://doi.org/10.1103/PhysRevE.66.046414

  14. S.A. Khrapak, A.V. Ivlev, G.E. Morfill, and S.K. Zhdanov, Phys. Rev. Lett. 90, 225002 (2003). https://doi.org/10.1103/PhysRevLett.90.22500

  15. S.A. Khrapak, A.V. Ivlev, S.K. Zhdanov, and G.E. Morfill, Phys. Plasmas 12, 042308 (2005). https://doi.org/10.1063/1.1867995

  16. T. Bystrenko and A. Zagorodny, Phys. Lett. A 299, 383 (2002). https://doi.org/10.1016/S0375-9601(02)00661-8

  17. H.M. Mott-Smith and I. Langmuir, Phys. Rev. 28, 727, (1926). https://doi.org/10.1103/PhysRev.28.727

  18. U. de Angelis, Physica Scripta 45, 465 (1992). 19. J.E. Allen, Physica Scripta 45, 497 (1992).

  19. J.E. Allen, Physica Scripta 45, 497 (1992).

  20. J.E. Allen, B.M. Annaratone, and U. de Angelis, J. Plasma Physics 63, 299 (2000). https://doi.org/10.1017/S0022377800008345

  21. C.T.N. Willis, M. Coppins, M. Bacharis, and J.E. Allen, Phys. Rev E 85, 036403 (2012). https://doi.org/10.1103/PhysRevE.85.036403

  22. I.L. Semenov, A.G. Zagorodny, and I.V. Krivtsun, Phys. Plasmas 18, 103707 (2011). https://doi.org/10.1063/1.3646918

  23. I.L. Semenov, A.G. Zagorodny, and I.V. Krivtsun, Phys. Plasmas 19, 043703 (2012). https://doi.org/10.1063/1.3701556

  24. H. Sugimoto and Y. Sone, Phys. Fluids A 4, 419 (1992). https://doi.org/10.1063/1.858313

  25. L. Mieussens, J. Comput. Phys. 162, 429 (2000). https://doi.org/10.1006/jcph.2000.6548

  26. P. Persson and G. Strang, SIAM Review 46, 329 (2004). https://doi.org/10.1137/S0036144503429121

  27. P. Batten, C. Lambert, and D.M. Causon, Int. J. Num. Methods Eng. 39, 1821 (1996). https://doi.org/10.1002/(SICI)1097-0207(19960615)39:11<1821::AID-NME929>3.0.CO;2-E

  28. E.F. Toro, Riemann Solvers and Numerical Methods for Fluid Dynamics: A Practical Introduction (Springer, Berlin, 2009). https://doi.org/10.1007/b79761

  29. O.C. Zienkiewicz and R. L. Taylor, The Finite Element Method: The Basis (Butterworth-Heinemann, Oxford, 2000).

  30. J.E. Daugherty, R.K. Porteous, M.D. Kilgore, and D.B. Graves, J. Appl. Phys. 72, 3934 (1992). https://doi.org/10.1063/1.352245

Published
2018-10-06
How to Cite
Semenov, I. (2018). Ion Drag Force on a Charged Macroparticle in Collisionless Plasma. Ukrainian Journal of Physics, 58(3), 228. https://doi.org/10.15407/ujpe58.03.0228
Section
Plasmas and gases