Ion Drag Force on a Charged Macroparticle in Collisionless Plasma

Authors

  • I. L. Semenov E.O. Paton Electric Welding Institute

DOI:

https://doi.org/10.15407/ujpe58.03.0228

Keywords:

ion drag force, collisionless plasma, binary collision approach

Abstract

The problem of calculating the ion drag force acting on a charged macroparticle in collisionless flowing plasma is studied by using an approach based on the direct numerical solution of the Vlasov kinetic equations for plasma components. A uniform plasma flow past a spherical macroparticle is considered. The computations are carried out for different particle sizes and different flow velocities. On the basis of the obtained results the effect of particle size on the ion drag force is analyzed. It is shown that when the particle size is much less than the Debye length in plasma, the ion drag force can be calculated with good accuracy by means of the conventional binary collision approach. A modified version of the binary collision approach is proposed to calculate the ion drag force in the case where the particle size becomes comparable to the Debye length in plasma. It is shown that there is a reasonable agreement between the results obtained using the numerical solution of the kinetic equations and that obtained by the modified binary collision approach.

References

<ol>
<li> M.S. Barnes, J.H. Keller, J.C. Forster, J.A. O'Neill, and D.K. Coultas, Phys. Rev. Lett. 68, 313 (1992).&nbsp;<a href="https://doi.org/10.1103/PhysRevLett.68.313">https://doi.org/10.1103/PhysRevLett.68.313</a></li>
<li> G.E. Morfill, H.M. Thomas, U. Konopka, H. Rothermel, M. Zuzic, A. Ivlev, and J. Goree, Phys. Rev. Lett. 83, 1598 (1999).&nbsp;<a href="https://doi.org/10.1103/PhysRevLett.83.1598">https://doi.org/10.1103/PhysRevLett.83.1598</a></li>
<li> S.V. Vladimirov and N.F. Cramer, Phys. Rev. E 62, 2754 (2000).&nbsp;<a href="https://doi.org/10.1103/PhysRevE.62.2754">https://doi.org/10.1103/PhysRevE.62.2754</a></li>
<li> N. D'Angelo, Phys. Plasmas 5, 3155 (1998).&nbsp;<a href="https://doi.org/10.1063/1.873042">https://doi.org/10.1063/1.873042</a></li>
<li> A.V. Ivlev, D. Samsonov, J. Goree, G. Morfill, and V.E. Fortov, Phys. Plasmas 6, 741 (1999).&nbsp;<a href="https://doi.org/10.1063/1.873311">https://doi.org/10.1063/1.873311</a></li>
<li> S.A. Khrapak and V.V. Yaroshenko, Phys. Plasmas 10, 4616 (2003).&nbsp;<a href="https://doi.org/10.1063/1.1621398">https://doi.org/10.1063/1.1621398</a></li>
<li> V.N. Tsytovich, Phys. Usp. 40, 53 (1997).&nbsp;<a href="https://doi.org/10.1070/PU1997v040n01ABEH000201">https://doi.org/10.1070/PU1997v040n01ABEH000201</a></li>
<li> S.A. Khrapak, A. Ivlev, and G. Morfill, Phys. Rev. E 64, 046403 (2001).&nbsp;<a href="https://doi.org/10.1103/PhysRevE.64.046403">https://doi.org/10.1103/PhysRevE.64.046403</a></li>
<li> S.A. Khrapak, S.K. Zhdanov, A.V. Ivlev, and G.E. Morfill, J. Appl. Phys. 101, 033307 (2007).&nbsp;<a href="https://doi.org/10.1063/1.2464187">https://doi.org/10.1063/1.2464187</a></li>
<li> L. Patacchini and I.H. Hutchinson, Phys. Rev. Lett. 101, 025001 (2008).&nbsp;<a href="https://doi.org/10.1103/PhysRevLett.101.025001">https://doi.org/10.1103/PhysRevLett.101.025001</a></li>
<li> A.V. Filippov, A.G. Zagorodny, A.I. Momot, A.F. Pal', and A.N. Starostin, JETP 108, 497 (2009).&nbsp;<a href="https://doi.org/10.1134/S1063776109030145">https://doi.org/10.1134/S1063776109030145</a></li>
<li> M.D. Kilgore, J.E. Daugherty, R.K. Porteous, and D.B. Graves, J. Appl. Phys. 73, 7195 (1993).&nbsp;<a href="https://doi.org/10.1063/1.352392">https://doi.org/10.1063/1.352392</a></li>
<li> S.A. Khrapak, A.V. Ivlev, G.E. Morfill, and H.M. Thomas, Phys. Rev. E 66, 046414 (2002).&nbsp;<a href="https://doi.org/10.1103/PhysRevE.66.046414">https://doi.org/10.1103/PhysRevE.66.046414</a></li>
<li> S.A. Khrapak, A.V. Ivlev, G.E. Morfill, and S.K. Zhdanov, Phys. Rev. Lett. 90, 225002 (2003).&nbsp;<a href="https://doi.org/10.1103/PhysRevLett.90.225002">https://doi.org/10.1103/PhysRevLett.90.22500</a></li>
<li> S.A. Khrapak, A.V. Ivlev, S.K. Zhdanov, and G.E. Morfill, Phys. Plasmas 12, 042308 (2005).&nbsp;<a href="https://doi.org/10.1063/1.1867995">https://doi.org/10.1063/1.1867995</a></li>
<li> T. Bystrenko and A. Zagorodny, Phys. Lett. A 299, 383 (2002).&nbsp;<a href="https://doi.org/10.1016/S0375-9601(02)00661-8">https://doi.org/10.1016/S0375-9601(02)00661-8</a></li>
<li> H.M. Mott-Smith and I. Langmuir, Phys. Rev. 28, 727, (1926).&nbsp;<a href="https://doi.org/10.1103/PhysRev.28.727">https://doi.org/10.1103/PhysRev.28.727</a></li>
<li> U. de Angelis, Physica Scripta 45, 465 (1992). 19. J.E. Allen, Physica Scripta 45, 497 (1992).</li>
<li> J.E. Allen, Physica Scripta 45, 497 (1992).</li>
<li> J.E. Allen, B.M. Annaratone, and U. de Angelis, J. Plasma Physics 63, 299 (2000).&nbsp;<a href="https://doi.org/10.1017/S0022377800008345">https://doi.org/10.1017/S0022377800008345</a></li>
<li> C.T.N. Willis, M. Coppins, M. Bacharis, and J.E. Allen, Phys. Rev E 85, 036403 (2012).&nbsp;<a href="https://doi.org/10.1103/PhysRevE.85.036403">https://doi.org/10.1103/PhysRevE.85.036403</a></li>
<li> I.L. Semenov, A.G. Zagorodny, and I.V. Krivtsun, Phys. Plasmas 18, 103707 (2011).&nbsp;<a href="https://doi.org/10.1063/1.3646918">https://doi.org/10.1063/1.3646918</a></li>
<li> I.L. Semenov, A.G. Zagorodny, and I.V. Krivtsun, Phys. Plasmas 19, 043703 (2012).&nbsp;<a href="https://doi.org/10.1063/1.3701556">https://doi.org/10.1063/1.3701556</a></li>
<li> H. Sugimoto and Y. Sone, Phys. Fluids A 4, 419 (1992).&nbsp;<a href="https://doi.org/10.1063/1.858313">https://doi.org/10.1063/1.858313</a></li>
<li> L. Mieussens, J. Comput. Phys. 162, 429 (2000).&nbsp;<a href="https://doi.org/10.1006/jcph.2000.6548">https://doi.org/10.1006/jcph.2000.6548</a></li>
<li> P. Persson and G. Strang, SIAM Review 46, 329 (2004).&nbsp;<a href="https://doi.org/10.1137/S0036144503429121">https://doi.org/10.1137/S0036144503429121</a></li>
<li> P. Batten, C. Lambert, and D.M. Causon, Int. J. Num. Methods Eng. 39, 1821 (1996).&nbsp;<a href="https://doi.org/10.1002/(SICI)1097-0207(19960615)39:11<1821::AID-NME929>3.0.CO;2-E">https://doi.org/10.1002/(SICI)1097-0207(19960615)39:11<1821::AID-NME929>3.0.CO;2-E</a></li>
<li> E.F. Toro, Riemann Solvers and Numerical Methods for Fluid Dynamics: A Practical Introduction (Springer, Berlin, 2009).&nbsp;<a href="https://doi.org/10.1007/b79761">https://doi.org/10.1007/b79761</a></li>
<li> O.C. Zienkiewicz and R. L. Taylor, The Finite Element Method: The Basis (Butterworth-Heinemann, Oxford, 2000).</li>
<li> J.E. Daugherty, R.K. Porteous, M.D. Kilgore, and D.B. Graves, J. Appl. Phys. 72, 3934 (1992).&nbsp;<a href="https://doi.org/10.1063/1.352245">https://doi.org/10.1063/1.352245</a></li>
</ol>

Downloads

Published

2018-10-06

How to Cite

Semenov, I. L. (2018). Ion Drag Force on a Charged Macroparticle in Collisionless Plasma. Ukrainian Journal of Physics, 58(3), 228. https://doi.org/10.15407/ujpe58.03.0228

Issue

Section

Plasmas and gases