Investigation of Hadron Multiplicities and Hadron Yield Ratios in Heavy Ion Collisions

  • D. R. Oliinychenko Bogoliubov Laboratory of Theoretical Physics
  • K. A. Bugaev Bogolyubov Institute for Theoretical Physics, Nat. Acad. of Sci. of Ukraine
  • A. S. Sorin Bogoliubov Laboratory of Theoretical Physics
Keywords: hadron resonance gas, second virial coefficients, chemical freeze-out

Abstract

We thoroughly discuss some weak points of the thermal model, which is traditionally used to describe the hadron multiplicities measured in the central nucleus-nucleus collisions. In particularly, the role of conservation laws and the values of hard-core radii along with the effects of the Lorentz contraction of hadron eigenvolumes and the hadronic surface tension are systematically studied. It is shown that, for the adequate description of hadron multiplicities, the conservation laws should be modified, whereas the conservation laws are not necessary at all for the description of hadron yield ratios. We analyzed the usual criteria for the chemical freeze-out and found that none of them is robust. A new chemical freeze-out criterion of constant entropy per hadron equals to 7.18 is suggested, and a novel effect of adiabatic chemical hadron production is discussed. Additionally, we found that the data for the center-of-mass energies above 10 GeV lead to the temperature of the nil hadronic surface tension coefficient of about T0 = 147 ± 7 MeV. This is a very intriguing result, since a very close estimate for such a temperature was obtained recently within an entirely different approach. We argue that these two independently obtained results evidence that the (tri)critical temperature of a QCD phase diagram is between 140 and 154 MeV. In addition, we suggest to consider the pion and kaon hardcore radii as new fitting parameters. Such an approach allows us, for the first time, to simultaneously describe the hadron multiplicities and the Strangeness Horn and to get a high-quality fit of the available experimental data.

References


  1. P. Braun-Munzinger, K. Redlich and J. Stachel, arXiv:0304013v1 [nucl-th] and references therein.

  2. A. Andronic, P. Braun-Munzinger, and J. Stachel, Nucl. Phys. A 772,167 (2006); arXiv:0511071v3 [nucl-th].

  3. A. Andronic, P. Braun-Munzinger, and J. Stachel, arXiv:0812.1186v3 [nucl-th].

  4. G.D. Yen and M.I. Gorenstein, Phys. Rev. C 59, 2788 (1999). https://doi.org/10.1103/PhysRevC.59.2788

  5. G.D. Yen, M.I. Gorenstein, W. Greiner, and S.N. Yang, Phys. Rev. C 56, 2210 (1997). https://doi.org/10.1103/PhysRevC.56.2210

  6. A. Andronic, P. Braun-Munzinger, J. Stachel, and M. Winn, arXiv:1201.0693v1 [nucl-th].

  7. S. Wheaton and J. Cleymans, arXiv:0407174 [hep-ph].

  8. L.M. Satarov, M.N. Dmitriev, and I.N. Mishustin, Phys. Atom. Nucl. 72, 1390 (2009). https://doi.org/10.1134/S1063778809080146

  9. D. Adamova et al. (CERES collaboration), Phys. Rev. Lett. 90, 022301 (2003); arXiv:0207008 [nucl-ex]; M. Lisa, S. Pratt, R. Soltz, and U. Wiedemann, Ann. Rev. Nucl. Part. Sci. 55, 357 (2005); arXiv:0505014 [nucl-ex].

  10. A. Bohr and B.R. Mottelson, Nuclear Structure, Vol.1, (Benjamin, New York, 1969).

  11. P. Braun-Munzinger, I. Heppe, and J. Stachel arXiv:9903010v2 [nucl-th].

  12. G.D. Yen, M.I. Gorenstein, W. Greiner, and S.N. Yang, Phys. Rev. C 56, 2210 (1997). https://doi.org/10.1103/PhysRevC.56.2210

  13. P. Braun-Munzinger, J. Stachel, J.P. Wesselsa, and N. Xu, Phys. Lett. B 344, 43 (1995); arXiv:9410026 [nucl-th]; Phys. Lett. B 365, 1 (1996); arXiv:9508020 [nucl-th].

  14. J. Cleymans, D. Elliott, A. Keranen, and E. Suhonen, Phys. Rev. C 57, 3319 (1998); arXiv:9711066 [nuclth];J. Cleymans, H. Oeschler, and K. Redlich, Phys. Rev. C 59, 1663 (1999); arXiv:809027 [nucl-th].

  15. R. Averbeck, R. Holzmann, V. Metag, and R.S. Simon, Phys. Rev. C 67, 024903 (2003); arXiv:0012007 [nucl-ex].

  16. P. Braun-Munzinger, I. Heppe, and J. Stachel, Phys. Lett. B 465, 15 (1999); arXiv:9903010 [nucl-th].

  17. P. Braun-Munzinger, D. Magestro, K. Redlich, and J. Stachel, Phys. Lett. B 518, 41 (2001); arXiv:0105229 [nucl-th].

  18. W. Broniowski, W. Florkowski, and M. Michalec, Acta Phys. Polon. B 33, 761 (2002); arXiv:0106009 [nucl-th]; W. Broniowski and W. Florkowski, Phys. Rev. C 65, 064905 (2002); arXiv:0112043 [nucl-th].

  19. M. Kaneta and N. Xu, arXiv:0405068 [nucl-th].

  20. J. Adams et al. (STAR collaboration), Nucl. Phys. A 757, 102 (2005); arXiv:0501009 [nucl-ex].

  21. R. Preghenella, arXiv:1111.7080 [hep-ex].

  22. P. Braun-Munzinger and J. Stachel, Nucl. Phys. A 638, 3c (1998); arXiv:9803015 [nucl-ex].

  23. J. Cleymans,H. Oeschler, K. Redlich, and S. Wheaton, Phys. Rev. C 73, 034905 (2006), J. Phys. G 32, S165 (2006). https://doi.org/10.1088/0954-3899/32/12/S21

  24. K.A. Bugaev, M.I. Gorenstein, H. St¨ocker, and W. Greiner, Phys. Lett. B 485, 121 (2000). https://doi.org/10.1016/S0370-2693(00)00690-0

  25. G. Zeeb, K.A. Bugaev, P.T. Reuter, and H. St¨ocker, Ukr. J. Phys. 53, 279 (2008).

  26. F. Becattini, M. Gazdzicki, A. Keranen, J. Manninen, and R. Stock, Phys. Rev. C 69, 024905 (2004). https://doi.org/10.1103/PhysRevC.69.024905

  27. A. Dumitru, L. Portugal, and D. Zschiesche, Phys. Rev. C 73, 024902 (2006); arXiv:0511084 [nucl-th].

  28. K.A. Bugaev, V.K. Petrov, and G.M. Zinovjev, Europhys. Lett. 85, 22002 (2009); arXiv:0801.4869v2 [hepph] and references therein. https://doi.org/10.1209/0295-5075/85/22002

  29. K.A. Bugaev, Nucl. Phys. A 807, 251 (2008); arXiv:1012.3400 [nucl-th]. https://doi.org/10.1016/j.nuclphysa.2008.04.007

  30. R.A. Ritchie, M.I. Gorenstein, and H.G. Miller, Z. Phys. C 75 2002 (1997). https://doi.org/10.1007/s002880050497

  31. R.K. Pathria, Statistical Mechanics (Pergamon Press, Oxford, 1972).

  32. K.A. Bugaev, Phys. Rev. C 76, 014903 (2007)  https://doi.org/10.1103/PhysRevC.76.014903; Phys. Atom. Nucl. 71, 1615 (2008);

  33. A.I. Ivanytskyi, Nucl. Phys. A 880, 12 (2012). https://doi.org/10.1016/j.nuclphysa.2012.02.004

  34. K.A. Bugaev, V.K. Petrov, and G.M. Zinovjev, Phys. Part. Nucl. Lett. 9, 397 (2012). https://doi.org/10.1134/S1547477112030065

  35. K.A. Bugaev and G.M. Zinovjev, Nucl. Phys. A 848, 443 (2010) https://doi.org/10.1016/j.nuclphysa.2010.09.007; K.A. Bugaev, Phys. Part. Nucl. Lett. 8, 907 (2011). https://doi.org/10.1134/S1547477111090093

  36. K.A. Bugaev, A.I. Ivanytskyi, E.G. Nikonov, V.K. Petrov, A.S. Sorin, and G.M. Zinovjev, Phys. Atom. Nucl. 75, 1 (2012). https://doi.org/10.1134/S1063778812060075

  37. M.E. Fisher, Physics 3, 255 (1967).

  38. K.A. Bugaev, M.I. Gorenstein, I. N. Mishustin, and W. Greiner, Phys. Rev. C 62, 044320 (2000)  https://doi.org/10.1103/PhysRevC.62.044320; Phys. Lett. B 498, 144 (2001). https://doi.org/10.1016/S0370-2693(00)01374-5

  39. S.K. Tiwari, P.K. Srivastava, and C.P. Singh, Phys. Rev. C 85, 014908 (2012). https://doi.org/10.1103/PhysRevC.85.014908

  40. M. Gazdzicki and M.I. Gorenstein, Acta Phys. Polon. B 30, 2705 (1999).

  41. M.I. Gorenstein, M. Gazdzicki, and K.A. Bugaev, Phys. Lett. B 567, 175 (2003). https://doi.org/10.1016/j.physletb.2003.06.043

  42. M. Gazdzicki, M.I. Gorenstein, and P. Seyboth, Acta Phys. Polon. B 42, 307 (2011). https://doi.org/10.5506/APhysPolB.42.307

Published
2018-10-06
How to Cite
Oliinychenko, D., Bugaev, K., & Sorin, A. (2018). Investigation of Hadron Multiplicities and Hadron Yield Ratios in Heavy Ion Collisions. Ukrainian Journal of Physics, 58(3), 211. https://doi.org/10.15407/ujpe58.03.0211
Section
Fields and elementary particles

Most read articles by the same author(s)