Asymmetric Diamond Ising–Hubbard Chain with Attraction

  • B. M. Lisnyi Institute for Condensed Matter Physics, Nat. Acad. of Sci. of Ukraine
Keywords: Ising–Hubbard chain, attraction, ground state, magnetization, specific heat

Abstract

The ground state and thermodynamic properties of an asymmetric diamond Ising–Hubbard chain with the on-site electron-electron attraction has been considered. The problem can be solved exactly using the decoration-iteration transformation. In the case of the antiferromagnetic Ising interaction, the influence of this attraction on the ground state and the temperature dependences of the magnetization, magnetic susceptibility, and specific heat has been studied.

References


  1. I. Syozi, Prog. Theor. Phys. 6, 341 (1951). https://doi.org/10.1143/ptp/5.3.341

  2. M. Fisher, Phys. Rev. 113, 969 (1959). https://doi.org/10.1103/PhysRev.113.969

  3. J. Strecka, Phys. Lett. A 374, 3718 (2010). https://doi.org/10.1016/j.physleta.2010.07.030

  4. O. Rojas and S.M. de Souza, J. Phys. A 44, 245001 (2011). https://doi.org/10.1088/1751-8113/44/24/245001

  5. H. Kikuchi, Y. Fujii, M. Chiba, S. Mitsudo, T. Idehara, T. Tonegawa, K. Okamoto, T. Sakai, T. Kuwai, and H. Ohta, Phys. Rev. Lett. 94, 227201 (2005). https://doi.org/10.1103/PhysRevLett.94.227201

  6. H. Kikuchi, Y. Fujii, M. Chiba, S. Mitsudo, T. Idehara, T. Tonegawa, K. Okamoto, T. Sakai, T. Kuwai, K. Kindo, A. Matsuo, W. Higemoto, K. Nishiyama, M. Horvati’c and C. Bertheir, Prog. Theor. Phys. Suppl. 159, 1 (2005). https://doi.org/10.1143/PTPS.159.1

  7. J. Strecka, M. Jascur, M. Hagiwara, K. Minami, Y. Narumi, and K. Kindo, Phys. Rev. B 72, 024459 (2005).

  8. L. Canov’a, J. Streˇcka, and M. Jaˇsˇcur, J. Phys. Con- ˇ dens. Matter 18, 4967 (2006).

  9. L. Canov´a, J. Streˇcka, and T. Luˇcivjansk´y, Condens. ˇ Matter Phys. 12, 353 (2009).

  10. B.M. Lisnyi, Ukr. J. Phys. 56, 1237 (2011).

  11. W. Van den Heuvel and L.F. Chibotaru, Phys. Rev. B 82, 174436 (2010). https://doi.org/10.1103/PhysRevB.82.174436

  12. V.R. Ohanyan and N.S. Ananikian, Phys. Lett. A 307, 76 (2003). https://doi.org/10.1016/S0375-9601(02)01224-0

  13. J. Strecka and M. Jascur, J. Phys. Condens. Matter 15, 4519 (2003). https://doi.org/10.1088/0953-8984/15/26/302

  14. J.S. Valverde, O. Rojas, and S.M. de Souza, Physica A 387, 1947 (2008). https://doi.org/10.1016/j.physa.2007.11.050

  15. J.S. Valverde, O. Rojas, and S.M. de Souza, J. Phys. Condens. Matter 20, 345208 (2008). https://doi.org/10.1088/0953-8984/20/34/345208

  16. M.S.S. Pereira, F.A.B.F. de Moura, and M.L. Lyra, Phys. Rev. B 77, 024402 (2008). https://doi.org/10.1103/PhysRevB.77.024402

  17. M.S.S. Pereira, F.A.B.F. de Moura, and M.L. Lyra, Phys. Rev. B 79, 054427 (2009). https://doi.org/10.1103/PhysRevB.79.054427

  18. V. Ohanyan, Condens. Matter Phys. 12, 343 (2009). https://doi.org/10.5488/CMP.12.3.343

  19. D. Antonosyan, S. Bellucci, and V. Ohanyan, Phys. Rev. B 79, 014432 (2009). https://doi.org/10.1103/PhysRevB.79.014432

  20. O. Rojas and S.M. de Souza, Phys. Lett. A 375, 1295 (2011). https://doi.org/10.1016/j.physleta.2011.02.001

  21. O. Rojas, S.M. de Souza, V. Ohanyan, and M. Khurshudyan, Phys. Rev. B 83, 094430 (2011). https://doi.org/10.1103/PhysRevB.83.094430

  22. J. Strecka, A. Tanaka, L. Canov’a, and T. Verkholyak, ˇ Phys. Rev. B 80, 174410 (2009).

  23. L. G’alisov’a, J. Streˇcka, A. Tanaka, and T. Verkholyak, J. Phys. Condens. Matter 23, 175602 (2011).

  24. B.M. Lisnyi, Low Temp. Phys. 37, 296 (2011). https://doi.org/10.1063/1.3592221

  25. J.E. Hirsch, Phys. Rev. B 31, 6022 (1985). https://doi.org/10.1103/PhysRevB.31.6022

  26. M.E. Zhuravlev, V.A. Ivanov, and V.V. Achkasov, Pis'ma Zh. Eksp. Teor. Fiz. 63, 83 (1996).

  27. Q. Wang and H. Zheng, Phys. Lett. A 314, 304 (2003). https://doi.org/10.1016/S0375-9601(03)00857-0

Published
2018-10-05
How to Cite
Lisnyi, B. (2018). Asymmetric Diamond Ising–Hubbard Chain with Attraction. Ukrainian Journal of Physics, 58(2), 195. https://doi.org/10.15407/ujpe58.02.0195
Section
General problems of theoretical physics