Asymmetric Diamond Ising–Hubbard Chain with Attraction

Authors

  • B. M. Lisnyi Institute for Condensed Matter Physics, Nat. Acad. of Sci. of Ukraine

DOI:

https://doi.org/10.15407/ujpe58.02.0195

Keywords:

Ising–Hubbard chain, attraction, ground state, magnetization, specific heat

Abstract

The ground state and thermodynamic properties of an asymmetric diamond Ising–Hubbard chain with the on-site electron-electron attraction has been considered. The problem can be solved exactly using the decoration-iteration transformation. In the case of the antiferromagnetic Ising interaction, the influence of this attraction on the ground state and the temperature dependences of the magnetization, magnetic susceptibility, and specific heat has been studied.

References

<ol>
<li> I. Syozi, Prog. Theor. Phys. 6, 341 (1951).&nbsp;<a href="https://doi.org/10.1143/ptp/5.3.341">https://doi.org/10.1143/ptp/5.3.341</a></li>
<li> M. Fisher, Phys. Rev. 113, 969 (1959).&nbsp;<a href="https://doi.org/10.1103/PhysRev.113.969">https://doi.org/10.1103/PhysRev.113.969</a></li>
<li> J. Strecka, Phys. Lett. A 374, 3718 (2010).&nbsp;<a href="https://doi.org/10.1016/j.physleta.2010.07.030">https://doi.org/10.1016/j.physleta.2010.07.030</a></li>
<li> O. Rojas and S.M. de Souza, J. Phys. A 44, 245001 (2011).&nbsp;<a href="https://doi.org/10.1088/1751-8113/44/24/245001">https://doi.org/10.1088/1751-8113/44/24/245001</a></li>
<li> H. Kikuchi, Y. Fujii, M. Chiba, S. Mitsudo, T. Idehara, T. Tonegawa, K. Okamoto, T. Sakai, T. Kuwai, and H. Ohta, Phys. Rev. Lett. 94, 227201 (2005).&nbsp;<a href="https://doi.org/10.1103/PhysRevLett.94.227201">https://doi.org/10.1103/PhysRevLett.94.227201</a></li>
<li> H. Kikuchi, Y. Fujii, M. Chiba, S. Mitsudo, T. Idehara, T. Tonegawa, K. Okamoto, T. Sakai, T. Kuwai, K. Kindo, A. Matsuo, W. Higemoto, K. Nishiyama, M. Horvati’c and C. Bertheir, Prog. Theor. Phys. Suppl. 159, 1 (2005).&nbsp;<a href="https://doi.org/10.1143/PTPS.159.1">https://doi.org/10.1143/PTPS.159.1</a></li>
<li> J. Strecka, M. Jascur, M. Hagiwara, K. Minami, Y. Narumi, and K. Kindo, Phys. Rev. B 72, 024459 (2005).</li>
<li> L. Canov’a, J. Streˇcka, and M. Jaˇsˇcur, J. Phys. Con- ˇ dens. Matter 18, 4967 (2006).</li>
<li> L. Canov´a, J. Streˇcka, and T. Luˇcivjansk´y, Condens. ˇ Matter Phys. 12, 353 (2009).</li>
<li> B.M. Lisnyi, Ukr. J. Phys. 56, 1237 (2011).</li>
<li> W. Van den Heuvel and L.F. Chibotaru, Phys. Rev. B 82, 174436 (2010).&nbsp;<a href="https://doi.org/10.1103/PhysRevB.82.174436">https://doi.org/10.1103/PhysRevB.82.174436</a></li>
<li> V.R. Ohanyan and N.S. Ananikian, Phys. Lett. A 307, 76 (2003).&nbsp;<a href="https://doi.org/10.1016/S0375-9601(02)01224-0">https://doi.org/10.1016/S0375-9601(02)01224-0</a></li>
<li> J. Strecka and M. Jascur, J. Phys. Condens. Matter 15, 4519 (2003).&nbsp;<a href="https://doi.org/10.1088/0953-8984/15/26/302">https://doi.org/10.1088/0953-8984/15/26/302</a></li>
<li> J.S. Valverde, O. Rojas, and S.M. de Souza, Physica A 387, 1947 (2008).&nbsp;<a href="https://doi.org/10.1016/j.physa.2007.11.050">https://doi.org/10.1016/j.physa.2007.11.050</a></li>
<li> J.S. Valverde, O. Rojas, and S.M. de Souza, J. Phys. Condens. Matter 20, 345208 (2008).&nbsp;<a href="https://doi.org/10.1088/0953-8984/20/34/345208">https://doi.org/10.1088/0953-8984/20/34/345208</a></li>
<li> M.S.S. Pereira, F.A.B.F. de Moura, and M.L. Lyra, Phys. Rev. B 77, 024402 (2008).&nbsp;<a href="https://doi.org/10.1103/PhysRevB.77.024402">https://doi.org/10.1103/PhysRevB.77.024402</a></li>
<li> M.S.S. Pereira, F.A.B.F. de Moura, and M.L. Lyra, Phys. Rev. B 79, 054427 (2009).&nbsp;<a href="https://doi.org/10.1103/PhysRevB.79.054427">https://doi.org/10.1103/PhysRevB.79.054427</a></li>
<li> V. Ohanyan, Condens. Matter Phys. 12, 343 (2009).&nbsp;<a href="https://doi.org/10.5488/CMP.12.3.343">https://doi.org/10.5488/CMP.12.3.343</a></li>
<li> D. Antonosyan, S. Bellucci, and V. Ohanyan, Phys. Rev. B 79, 014432 (2009).&nbsp;<a href="https://doi.org/10.1103/PhysRevB.79.014432">https://doi.org/10.1103/PhysRevB.79.014432</a></li>
<li> O. Rojas and S.M. de Souza, Phys. Lett. A 375, 1295 (2011).&nbsp;<a href="https://doi.org/10.1016/j.physleta.2011.02.001">https://doi.org/10.1016/j.physleta.2011.02.001</a></li>
<li> O. Rojas, S.M. de Souza, V. Ohanyan, and M. Khurshudyan, Phys. Rev. B 83, 094430 (2011).&nbsp;<a href="https://doi.org/10.1103/PhysRevB.83.094430">https://doi.org/10.1103/PhysRevB.83.094430</a></li>
<li> J. Strecka, A. Tanaka, L. Canov’a, and T. Verkholyak, ˇ Phys. Rev. B 80, 174410 (2009).</li>
<li> L. G’alisov’a, J. Streˇcka, A. Tanaka, and T. Verkholyak, J. Phys. Condens. Matter 23, 175602 (2011).</li>
<li> B.M. Lisnyi, Low Temp. Phys. 37, 296 (2011).&nbsp;<a href="https://doi.org/10.1063/1.3592221">https://doi.org/10.1063/1.3592221</a></li>
<li> J.E. Hirsch, Phys. Rev. B 31, 6022 (1985).&nbsp;<a href="https://doi.org/10.1103/PhysRevB.31.6022">https://doi.org/10.1103/PhysRevB.31.6022</a></li>
<li> M.E. Zhuravlev, V.A. Ivanov, and V.V. Achkasov, Pis'ma Zh. Eksp. Teor. Fiz. 63, 83 (1996).</li>
<li> Q. Wang and H. Zheng, Phys. Lett. A 314, 304 (2003).&nbsp;<a href="https://doi.org/10.1016/S0375-9601(03)00857-0">https://doi.org/10.1016/S0375-9601(03)00857-0</a></li>
</ol>

Published

2018-10-05

How to Cite

Lisnyi, B. M. (2018). Asymmetric Diamond Ising–Hubbard Chain with Attraction. Ukrainian Journal of Physics, 58(2), 195. https://doi.org/10.15407/ujpe58.02.0195

Issue

Section

General problems of theoretical physics