A Strongly Nonequilibrium State in Magnetic Nanodots at High Pumping Levels


  • G. A. Melkov Taras Shevchenko National University of Kyiv, Faculty of Radiophysics
  • D. V. Slobodianiuk Taras Shevchenko National University of Kyiv, Faculty of Radiophysics




spin waves, magnetic nanoelements, permalloy, parametric processes, nonlinear ferromagnetic resonance


A theoretical model describing a strongly excited magnon system in a magnetic nanodot has been developed. In this system, despite the discreteness of its spectrum, the parametric processes similar to those occurring in massive specimens take place, in particular, the processes of Suhl instability. Owing to a slight mismatch between the frequencies of modes that are engaged in the indicated processes, the threshold of the latter becomes somewhat higher and a non-resonant parametric interaction takes place. It is shown that, at certain power levels in the system, the processes similar to those of the so-called kinetic instability observed in massive specimens can emerge to excite the lowest-frequency mode of a nanoelement.


<li> J.L. Simonds, Phys. Today 48, N 4, 26 (1995).&nbsp;<a href="https://doi.org/10.1063/1.881482">https://doi.org/10.1063/1.881482</a></li>
<li> Magnetic Nanostructures, edited by H.S. Nalwa (Amer. Sci. Publ., Los Angeles, 2002).</li>
<li> M. Weiss, Phys. Rev. Lett. 1, 239 (1958).&nbsp;<a href="https://doi.org/10.1103/PhysRevLett.1.239">https://doi.org/10.1103/PhysRevLett.1.239</a></li>
<li> Y.K. Fetisov, C.E. Patton, and V.T. Synogach, IEEE Trans. Mag. 35, 4511 (1999).&nbsp;<a href="https://doi.org/10.1109/20.809144">https://doi.org/10.1109/20.809144</a></li>
<li> A. Prabhakar and D.D. Stansil, J. Appl. Phys. 85, 4859 (1999).&nbsp;<a href="https://doi.org/10.1063/1.370045">https://doi.org/10.1063/1.370045</a></li>
<li> H. Suhl, J. Phys. Chem. Solids 1, 209 (1957).&nbsp;<a href="https://doi.org/10.1016/0022-3697(57)90010-0">https://doi.org/10.1016/0022-3697(57)90010-0</a></li>
<li> V.S. L'vov, Nonlinear Spin Waves (Nauka, Moscow, 1994) (in Russian).</li>
<li> R. Zivieri and R.L. Stamps, Phys. Rev. B 73, 144422 (2006).&nbsp;<a href="https://doi.org/10.1103/PhysRevB.73.144422">https://doi.org/10.1103/PhysRevB.73.144422</a></li>
<li> V.E. Demidov, H. Ulrichs, S.O. Demokritov, and S. Urazhdin, Phys. Rev. B 83, 020404 (2011).&nbsp;<a href="https://doi.org/10.1103/PhysRevB.83.020404">https://doi.org/10.1103/PhysRevB.83.020404</a></li>
<li> Y. Kobljanskyj, G. Melkov, K. Guslienko, V. Novosad, S.D. Bader, M. Kostylev, and A. Slavin, Sci. Rep. 2, 478 (2012).&nbsp;<a href="https://doi.org/10.1038/srep00478">https://doi.org/10.1038/srep00478</a></li>
<li> A.G. Gurevich and G.A. Melkov, Magnetization Oscillations and Waves (CRC Press, Boca Raton, 1996).</li>
<li> M. Beleggia, M. De Graef, Y.T. Millev, D.A. Goode, and G. Rowlands, J. Phys. D 38, 3333 (2005).&nbsp;<a href="https://doi.org/10.1088/0022-3727/38/18/001">https://doi.org/10.1088/0022-3727/38/18/001</a></li>
<li> A.V. Lavrenenko, V.S. L'vov, G.A. Melkov, and V.B. Tcherepanov, Zh. Eksp. Teor. Fiz. 81, 1022 (1981).</li>



How to Cite

Melkov, G. A., & Slobodianiuk, D. V. (2018). A Strongly Nonequilibrium State in Magnetic Nanodots at High Pumping Levels. Ukrainian Journal of Physics, 58(2), 189. https://doi.org/10.15407/ujpe58.02.0189




Most read articles by the same author(s)