Theory of the Properties of Resonant-Tunneling Nanostructures as Active Elements of Quantum Cascade Lasers and Detectors

Authors

  • M. V. Tkach Yu. Fed’kovich National University of Chernivtsi
  • Yu. O. Seti Yu. Fed’kovich National University of Chernivtsi

DOI:

https://doi.org/10.15407/ujpe58.02.0182

Keywords:

resonance-tunnel nanostructure, conductivity

Abstract

A theory describing the spectral parameters of quasistationary states and the dynamic conductivity in an open three-barrier resonant-tunneling system (RTS) as an active element of a quantum cascade laser or a quantum cascade detector has been developed in the framework of the rectangular potential model and the effective electron mass approximation. It is shown that the optimal functioning of a three-barrier RTS can be obtained by properly choosing its geometric configuration, namely, by arranging the inner barrier closer to the input one in a position determined by the electromagnetic field energy.

References

<ol>
<li> A.F. Kazarinov and R.A. Suris, Fiz. Tekh. Poluprovodn. 6, 135 (1972).</li>
<li> J. Faist, F. Capasso, D.L. Sivco, C. Sirtori, A.L. Hutchinson, and A.Y. Cho, Science 264, 553 (1994).&nbsp;<a href="https://doi.org/10.1126/science.264.5158.553">https://doi.org/10.1126/science.264.5158.553</a></li>
<li> J. Faist, F. Capasso, and C. Sirtori, Appl. Phys. Lett. 66, 538 (1995).&nbsp;<a href="https://doi.org/10.1063/1.114005">https://doi.org/10.1063/1.114005</a></li>
<li> C. Gmachl, F. Capasso, D.L. Sivco, and A.Y. Cho, Rep. Prog. Phys. 64, 1533 (2001).&nbsp;<a href="https://doi.org/10.1088/0034-4885/64/11/204">https://doi.org/10.1088/0034-4885/64/11/204</a></li>
<li> F.R. Giorgetta, E. Baumann, D. Hofstetter, C. Manz, Q. Yang, K. K¨ohler, and M. Graf, Appl. Phys. Lett. 91, 111115 (2007).&nbsp;<a href="https://doi.org/10.1063/1.2784289">https://doi.org/10.1063/1.2784289</a></li>
<li> V. Berger, Patent France No. 0109754 (2001).</li>
<li> N.V. Tkach and Yu.A. Seti, Fiz. Nizk. Temp. 35, 710 (2009).</li>
<li> M.V. Tkach and Yu.O. Seti, Ukr. Fiz. Zh. 55, 801 (2010).</li>
<li> N.V. Tkach and Yu.A. Seti, Fiz. Tekh. Poluprovodn. 45, 387 (2011).</li>
<li> E.I. Golant, A.B. Pashkovskii, and A.S. Tager, Fiz. Tekh. Poluprovodn. 28, 740 (1994).</li>
<li> L.D. Landau and E.M. Lifshitz, Quantum Mechanics. Non-Relativistic Theory (Pergamon Press, New York, 1977).</li>
<li> M.V. Tkach, O.M. Makhanets, Ju.O. Seti, M.M. Dovganiuk, and O.M. Voitsekhivska, Acta Phys. Pol. A 117, 965 (2010).&nbsp;<a href="https://doi.org/10.12693/APhysPolA.117.965">https://doi.org/10.12693/APhysPolA.117.965</a></li>
<li> Q.J. Wang, C. Pflug, L. Diehl, F. Capasso, T. Edamura, S. Furuta, M. Yamanishi, and H. Kan, Appl. Phys. Lett. 94, 011103 (2009).&nbsp;<a href="https://doi.org/10.1063/1.3062981">https://doi.org/10.1063/1.3062981</a></li>
<li> D. Hofstetter, F.R. Giorgetta, E. Baumann, Q. Yang, C. Manz, and K. K¨ohler, Appl. Phys. Lett. 93, 221106 (2008).&nbsp;<a href="https://doi.org/10.1063/1.3036897">https://doi.org/10.1063/1.3036897</a></li>
</ol>

Published

2018-10-05

How to Cite

Tkach, M. V., & Seti, Y. O. (2018). Theory of the Properties of Resonant-Tunneling Nanostructures as Active Elements of Quantum Cascade Lasers and Detectors. Ukrainian Journal of Physics, 58(2), 182. https://doi.org/10.15407/ujpe58.02.0182

Issue

Section

Nanosystems