Discrete Properties of Quasiliquid Water Film in the Ice Premelting Range. 1. Temperature Dependences of Water Nanofilm Thickness and Viscoelastic Properties of Polycrystalline Ice

Authors

  • M. E. Kornienko Taras Shevchenko National University of Kyiv, Faculty of Physics
  • N. L. Sheiko Taras Shevchenko National University of Kyiv, Faculty of Physics
  • O. M. Kornienko Taras Shevchenko National University of Kyiv, Faculty of Physics
  • T. Yu. Nikolaienko Taras Shevchenko National University of Kyiv, Faculty of Physics

DOI:

https://doi.org/10.15407/ujpe58.02.0151

Keywords:

viscoelastic properties, premelting, quasiliquid

Abstract

Peculiarities in the temperature dependences of the properties of quasiliquid water films on the surface of ice crystallites have been studied experimentally under ice premelting conditions. Viscoelastic properties of polycrystalline ice in the temperature interval from 60 to 20 oC have been analyzed. Peculiarities in the temperature dependences of the water nanolayer thickness, L(T), and the imaginary part of the shear modulus (modulus of viscous losses), G2(T), are found. Quasiequidistant temperature variations of the viscous loss modulus are revealed for the first time. A comparison of the results obtained with literature data on the temperature dependences L(T), the density of water in nanolayers, and the ice surface roughness allowed us to associate the observed features with a discrete cluster structure of quasiliquid water nanofilms. Temperature intervals of the enhanced stability for a cluster structure of water nanofilms are revealed, which manifest themselves in the form of extrema in viscoelastic ice parameters in the premelting interval. The interrelation between the phenomena of ice premelting and temperature discretization at the melting in ice nanolayers is considered for the first time.

References

<ol>
<li> V.F. Petrenko and R.W. Whitworth, Physics of Ice (Oxford Univ. Press, London, 1999).</li>
<li> Yu.I. Golovin, A.A. Shibkov, and O.V. Shishkina, Fiz. Tverd. Tela 42(7), 1250 (2000).</li>
<li> T. Bryk and A.D.J. Haymet, J. Chem.Phys. 117, 10258 (2002).&nbsp;<a href="https://doi.org/10.1063/1.1519538">CrossRef</a></li>
<li> I.A. Ryzhkin and V.F. Petrenko, Zh. Eksp. Teor. Fiz. 135, 77 (2009).</li>
<li> G.S.Bordonskii and S.D.Krylov, Pis'ma Zh. Tekhn. Fiz. 35, No. 7, 80 (2009).</li>
<li> G.S. Bordonskii, A.A. Gurulev, and S.D. Krylov, Pis'ma Zh. Tekhn. Fiz. 35, No. 22, 46 (2009).</li>
<li> G.D. Koposov and A.V. Tyagunin, Pis'ma Zh. Eksp. Teor. Fiz. 94, 406 (2011).</li>
<li> M.E. Kornienko, Ukr. Fiz. Zh. 46, 546 (2001).</li>
<li> M.E. Kornienko, Ukr. Fiz. Zh. 47, 361 (2002).</li>
<li> N.E. Kornienko, V.I. Malyi, G.V. Ponezha, and E.A. Ponezha, Dokl. AN UkrSSR, Ser. A, No. 4, 65 (1983).</li>
<li> N.E. Kornienko, V.I. Malyi, G.V. Ponezha, and E.A. Ponezha, Opt. Spektrosk. 60, 1171 (1986).</li>
<li> N.E. Kornienko, Kvant. Elektron. 12, 1595 (1985).</li>
<li> M.E. Kornienko, Ukr. Fiz. Zh. 47, 435 (2002).</li>
<li> N.E. Kornienko, Fiz. Zhivogo 16, No. 1, 5 (2008).</li>
<li> M.E. Kornienko, Visn. Kyiv. Univ. Ser. Fiz. Mat. Nauky No. 3, 489 (2006).</li>
<li> N.E. Kornienko, N.P. Kulish, S.A. Alekseev, O.P. Dmitrenko, and E.L. Pavlenko, Opt. Spectrosc. 109, 742 (2010).&nbsp;<a href="https://doi.org/10.1134/S0030400X10110147">CrossRef</a></li>
<li> N.E. Kornienko, V.I. Grigoruk, A.N. Kornienko, and S.A. Alexeev, in Abstracts of the 2nd International Scientific Conference "Nanostructure materials–2010: Belarus–Russia–Ukraine Nano-2010" (Ukraine, Kiev, 2010), p. 98 (in Russian).</li>
<li> N.E. Kornienko, V.I. Grigoruk, and A.N. Kornienko, Vestn. Tambov. Univ. Ser. Estestv. Tekhn. Nauki 15, 953 (2010).</li>
<li> N.E. Kornienko, V.I. Grigoruk, and A.N. Kornienko, in Proceedings of the International Scientific Conference "Challenging Problems in Solid-State Physics", 18–21 October 2011, Minsk (Minsk,2011), Vol. 1, p. 26 (in Russian).</li>
<li> M. Elbaum and J. S. Wettlaufer, Phys. Rev. E 48, 3180 (1993).&nbsp;<a href="https://doi.org/10.1103/PhysRevE.48.3180">CrossRef</a></li>
<li> J.G. Dash, A.W. Rempel, and J.S. Wettlaufer, Rev. Mod. Phys. 78, 695 (2006).&nbsp;<a href="https://doi.org/10.1103/RevModPhys.78.695">CrossRef</a></li>
<li> S. Engemann, H. Reichert, H. Dosch, J. Bilgram, V. Honkimaki, and A. Snigirev, Phys. Rev. Lett. 92, 205701 (2004).&nbsp;<a href="https://doi.org/10.1103/PhysRevLett.92.205701">CrossRef</a></li>
<li> S.Ch. Engemann, Ph.D. thesis (Max-Planck-Institut fur Metallforschung, Stuttgart, 2005).</li>
<li> A. Doppenschmidt and H.-J. Butt, Langmuir 16, 6709 (2000).&nbsp;<a href="https://doi.org/10.1021/la990799w">CrossRef</a></li>
<li> E. Prouzet, J.-B. Brubach, and P. Roy, J. Phys. Chem. B 114, 8081 (2010).&nbsp;<a href="https://doi.org/10.1021/jp101176v">CrossRef</a></li>
<li> M.E. Kornienko, Visn. Kyiv. Univ. Ser. Fiz. Mat. Nauky No. 4, 466 (2004).</li>
<li> M.E. Kornienko, Visn. Kyiv. Univ. Ser. Fiz. Mat. Nauky No. 3, 520 (2005).</li>
<li> S.S. Xantheas and T.H. Dunning, J. Chem. Phys. 99, 8774 (1993).&nbsp;<a href="https://doi.org/10.1063/1.465599">CrossRef</a></li>
<li> H. Cybulski and J. Sadlej, Chem. Phys. 342, 163 (2007).&nbsp;<a href="https://doi.org/10.1016/j.chemphys.2007.09.058">CrossRef</a></li>
<li> M. Losada and S. Leutwyler, J. Chem. Phys. 117, 2003 (2002).&nbsp;<a href="https://doi.org/10.1063/1.1487371">CrossRef</a></li>
<li> H.M. Lee, S.B. Suh, J.Y. Lee, P. Tarakeshwar, and K.S. Kim, J. Chem. Phys. 112, 9759 (2000).&nbsp;<a href="https://doi.org/10.1063/1.481613">CrossRef</a></li>
<li> G.S. Fanourgakis, E. Apra, W.A. de Jong, and S.S. Xantheas, J. Chem. Phys. 122, 134304 (2005).&nbsp;<a href="https://doi.org/10.1063/1.1864892">CrossRef</a></li>
<li> P. Qian, Li-nan Lu, W. Song, and Zh.-zhi Yang, Theor. Chem. Acc. 123, 487 (2009).&nbsp;<a href="https://doi.org/10.1007/s00214-009-0569-1">CrossRef</a></li>
<li> L.A. Bulavin, O.Yu. Aktan, Yu.F. Zabashta, T.Yu. Nikolaenko, N.L. Sheiko, Tech. Phys. Lett. 36, Issue 3, 279 (2010).&nbsp;<a href="https://doi.org/10.1134/S1063785010030235">CrossRef</a></li>
<li> N.L. Sheiko, O.Yu. Aktan, Yu.F. Zabashta, and T.Yu. Nikolayenko, Ukr. Fiz. Zh. 55, 299 (2010).</li>
<li> I.M. Neklyudov, A.A. Parkhomenko, I.N. Laptev, V.V. Krasil'nikov, and S.E. Savotchenko, in Proceedings of the 51st International Conference "Challenging Problems of Strength" (Kharkov, 2001), p. 3 (in Russian).</li>
<li> Ph. Buffat and J.P. Borel, Phys. Rev. A 13, 2287 (1976).&nbsp;<a href="https://doi.org/10.1103/PhysRevA.13.2287">CrossRef</a></li>
<li> X. Wei, P.B. Miranda, and Y.R. Shen, Phys. Rev. Lett. 86, 1554 (2001).&nbsp;<a href="https://doi.org/10.1103/PhysRevLett.86.1554">CrossRef</a></li>
<li> X. Wei, P.B. Miranda, Ch. Zhang, and Y.R. Shen, Phys. Rev. B 66, 085401 (2002).&nbsp;<a href="https://doi.org/10.1103/PhysRevB.66.085401>CrossRef</a></li>
<li> Y. Beygelzimer, A. Reshetov, S. Synkov, O. Prokof'eva, and R. Kulagin, J. Mater. Process. Technol. 209, 3650 (2009).&nbsp;<a href="https://doi.org/10.1016/j.jmatprotec.2008.08.022">CrossRef</a></li>
</ol>

Published

2018-10-05

How to Cite

Kornienko, M. E., Sheiko, N. L., Kornienko, O. M., & Nikolaienko, T. Y. (2018). Discrete Properties of Quasiliquid Water Film in the Ice Premelting Range. 1. Temperature Dependences of Water Nanofilm Thickness and Viscoelastic Properties of Polycrystalline Ice. Ukrainian Journal of Physics, 58(2), 151. https://doi.org/10.15407/ujpe58.02.0151

Issue

Section

Nanosystems