Recombination Characteristics of Single-Crystalline Silicon Wafers with a Damaged Near-Surface Layer

Authors

  • A. V. Sachenko V.E. Lashkaryov Institute of Semiconductor Physics, Nat. Acad. of Sci. of Ukraine
  • V. P. Kostylyov V.E. Lashkaryov Institute of Semiconductor Physics, Nat. Acad. of Sci. of Ukraine
  • V. G. Litovchenko V.E. Lashkaryov Institute of Semiconductor Physics, Nat. Acad. of Sci. of Ukraine
  • V. G. Popov V.E. Lashkaryov Institute of Semiconductor Physics, Nat. Acad. of Sci. of Ukraine
  • B. M. Romanyuk V.E. Lashkaryov Institute of Semiconductor Physics, Nat. Acad. of Sci. of Ukraine
  • V. V. Chernenko V.E. Lashkaryov Institute of Semiconductor Physics, Nat. Acad. of Sci. of Ukraine
  • V. M. Naseka V.E. Lashkaryov Institute of Semiconductor Physics, Nat. Acad. of Sci. of Ukraine
  • T. V. Slusar National Aviation University
  • S. I. Kyrylova V.E. Lashkaryov Institute of Semiconductor Physics, Nat. Acad. of Sci. of Ukraine
  • F. F. Komarov A.N. Sevchenko Institute for Applied Physical Problems, Belarusian State University

DOI:

https://doi.org/10.15407/ujpe58.02.0142

Keywords:

surface photovoltage, surface recombination, silicon

Abstract

Spectral dependences of the small-signal surface photovoltage, Vf (л), with a region of short- wave recession have been studied experimentally and theoretically. The dependences Vf (л) are shown to enable important information concerning a modification of surface and bulk recombination properties of the photosensitive silicon material in the short-wave spectral range to be obtained experimentally with the use of a nondestructive technique. In particular, the
formation of a damaged near-surface layer owing to the Fe implantation is found to bring about a significant decrease in the diffusion length (i.e. the lifetime) in the implanted layer and an increase of the effective surface recombination rate on the illuminated surface.

References

<ol>
<li> W. Gartner, Phys. Rev. 105, 823 (1997).&nbsp;<a href="https://doi.org/10.1103/PhysRev.105.823">CrossRef</a></li>
<li> V.A. Zuev and V.G. Litovchenko, Phys. Status Solidi A 16, 175 (1966).&nbsp;<a href="https://doi.org/10.1002/pssb.19660160242">CrossRef</a></li>
<li> V.A. Zuev and V.G. Litovchenko, Surf. Sci. 32, 365 (1972).&nbsp;<a href="https://doi.org/10.1016/0039-6028(72)90166-5">CrossRef</a></li>
<li> L. Kronik and Y. Shapira, Surf. Sci. Rep. 37, 1 (1999).&nbsp;<a href="https://doi.org/10.1016/S0167-5729(99)00002-3">CrossRef</a></li>
<li> A.P. Gorban', V.P. Kostylyov, V.G. Litovchenko, A.V. Sachenko, and O.V. Snitko, Ukr. Fiz. Zh. 34, 404 (1989).</li>
<li> A.P. Gorban', V.P. Kostylyov, A.V. Sachenko, A.A. Serba, and V.V. Chernenko, Optoelektron. Poluprovodn. Tekhn. 37, 61 (2002).</li>
<li> A.P. Gorban', V.P. Kostylyov, A.V. Sachenko, O.A. Serba, I.O. Sokolovskyi, and V.V. Chernenko, Ukr. Fiz. Zh. 55, 784 (2010).</li>
<li> V.V. Antoshchuk, V.V. Milenin, V.E. Primachenko, and O.V. Snitko, Fiz. Tekh. Poluprovodn. 11, 2002 (1977).</li>
<li> V.G. Litovchenko and A.P. Gorban', Fundamentals of Microelectronic Metal–Insulator–Semiconductor Systems (Naukova Dumka, Kyiv, 1978) (in Russian).</li>
<li> A.V. Sachenko and O.V. Snitko, Photo-Effects in Near-Surface Layers of Semiconductors (Naukova Dumka, Kyiv, 1984) (in Russian).</li>
<li> A.L. Fahrenbruch and R.H. Bube, Fundamentals of Solar Cells: Photovoltaic Solar Energy Conversion (Academic Press, New York, 1983).</li>
<li> K.D. Glinchuk and N.M. Litovchenko, Poluprovodn. Tekhn. Mikroelektron. 28, 4 (1978).</li>
<li> V.G. Litovchenko, V.M. Naseka, and A.A. Evtukh, Ukr. J. Phys. 57, 73 (2012).</li>
</ol>

Downloads

Published

2018-10-05

How to Cite

Sachenko, A. V., Kostylyov, V. P., Litovchenko, V. G., Popov, V. G., Romanyuk, B. M., Chernenko, V. V., Naseka, V. M., Slusar, T. V., Kyrylova, S. I., & Komarov, F. F. (2018). Recombination Characteristics of Single-Crystalline Silicon Wafers with a Damaged Near-Surface Layer. Ukrainian Journal of Physics, 58(2), 142. https://doi.org/10.15407/ujpe58.02.0142

Issue

Section

Solid matter