Features of Charge Transport in Mo/n-Si Structures with a Schottky Barrier

  • O. Ya. Olikh Taras Shevchenko National University of Kyiv, Faculty of Physics
Keywords: inhomogeneous Schottky barrier, thermionic emission, silicon


Forward and reverse current-voltage characteristics of Mo/n-Si Schottky barrier structures have been studied experimentally in the temperature range 130-330 K. The Schottky barrier height is found to increase and the ideality factor to decrease, as the temperature grows. The obtained results are analyzed in the framework of a non-uniform contact model. The average value and the standard deviation of a Schottky barrier height are determined to be 0.872 and 0.099 V, respectively, at T = 130220 K and 0.656 and 0.036 V, respectively, at T = 230330 K. Thermionic emission over the non-uniform barrier and tunneling are shown to be the dominant processes of charge transfer at a reverse bias voltage.


  1. J.P. Colinge and C.A. Colinge, Physics of Semiconductor Device (Kluwer, Dordrecht, 2002).

  2. V.I. Strikha, Contact Phenomena in Semiconductors (Vyshcha Shkola, Kyiv, 1982) (in Russian).

  3. E. Arslan, S. Altindal, S. Ozcelik, and E. Ozbay, J. Appl. Phys. 105, 023705 (2009). CrossRef

  4. D. Donoval, A. Chvala, R. Sramaty, J. Kovac, J.-F. Carlin, N. Grandjean, G. Pozzovivo, J. Kuzmik, D. Pogany, G. Strasser, and P. Kordos, Appl. Phys. Lett. 96, 223501 (2010). CrossRef

  5. S. Huang et al., Semicond. Sci. Technol. 24, 055005 (2009). CrossRef

  6. V.V. Evstropov, Yu.V. Zhilyaev, M. Dzhumaeva, and N. Nazarov, Fiz. Tekh. Poluprovodn. 31, 152 (1997).

  7. C.H. Lee and K.S. Lim, Appl. Phys. Lett. 75, 569 (1999). CrossRef

  8. D.M. Sathaiyaa and S. Karmalkar, J. Appl. Phys. 99, 093701 (2006). CrossRef

  9. J.W.P. Hsu, M.J. Manfra, R.J. Molnar, B. Heying, and J.S. Speck, Appl. Phys. Lett. 81, 79 (2002). CrossRef

  10. J.H. Werner and H.H. Guttler, J. Appl. Phys. 69, 1522 (1991). CrossRef

  11. J.P. Sullivan, R.T.Tung, M.R. Pinto, and W.R. Graham, J. Appl. Phys. 70, 7403 (1991). CrossRef

  12. R.T. Tung, Phys. Rev. B 45, 13509 (1992). CrossRef

  13. K. Sarpatwari, S.E. Mohney, and O.O. Awadelkarim, J. Appl. Phys. 109, 014510 (2011). CrossRef

  14. M. Biber, O. Gullu, S. Forment, R.L. Van Meirhaeghe, and A. Turut, Semicond. Sci. Technol. 21, 1 (2006). CrossRef

  15. I. Tascioglu, U. Aydemir, and S. Altindal, J. Appl. Phys. 108, 064506 (2010). CrossRef

  16. N. Yildirim, K. Ejderha, and A. Turut, J. Appl. Phys. 108, 114506 (2010). CrossRef

  17. M. Mamor, J. Phys. Condens. Matter 21, 335802 (2009). CrossRef

  18. F. Iucolano, F. Roccaforte, F. Giannazzo, and V. Raineri, J. Appl. Phys. 102, 113701 (2007). CrossRef

  19. F. Iucolano, F. Roccaforte, F. Giannazzo, and V. Raineri, Appl. Phys. Lett. 90, 092119 (2007). CrossRef

  20. S.K. Cheung and N.W. Cheung, Appl. Phys. Lett. 49, 85 (1986). CrossRef

  21. D. Gromov and V. Pugachevich, Appl. Phys. A 59, 331 (1994). CrossRef

  22. D.K. Schroder, Semiconductor Material and Device Characterization (Wiley, Hoboken, NJ, 2006).

  23. S. Zhu, R.L. Van Meirhaeghe, C. Detavernier,G.-P. Ru, B.-Z. Li, and F. Cardon, Solid State Commun. 112, 611 (1999). CrossRef

  24. M.O. Aboelfotoh, J. Appl. Phys. 66, 262 (1989). CrossRef

  25. V.G. Bozhkov and A.V. Shmargunov, J. Appl. Phys. 109, 113718 (2011). CrossRef

  26. T. Markvart and L. Castaner, Practical Handbook of Photovoltaics. Fundamentals and Application (Elsevier, New York, 2003).

  27. R.F. Schmitsdorf, T.U. Kampen, and W. Monch, J. Vac. Sci. Technol. B 15, 1221 (1997). CrossRef

  28. T.P. Chen, T.C. Lee, C.C. Ling, C.D. Beling, and S. Fung, Solid State Electron. 36, 949 (1993). CrossRef

  29. Y.-L. Jiang, G.-P. Rua, F. Lu, X.-P. Qu, B.-Z. Li, and S. Yang, J. Appl. Phys. 93, 866 (2003). CrossRef

  30. J.M. Andrews and M.P. Lepselter, Solid State Electron. 13, 1011 (1970). CrossRef

How to Cite
Olikh, O. (2018). Features of Charge Transport in Mo/n-Si Structures with a Schottky Barrier. Ukrainian Journal of Physics, 58(2), 126. https://doi.org/10.15407/ujpe58.02.0126
Solid matter