Features of Charge Transport in Mo/n-Si Structures with a Schottky Barrier

Authors

  • O. Ya. Olikh Taras Shevchenko National University of Kyiv, Faculty of Physics

DOI:

https://doi.org/10.15407/ujpe58.02.0126

Keywords:

inhomogeneous Schottky barrier, thermionic emission, silicon

Abstract

Forward and reverse current-voltage characteristics of Mo/n-Si Schottky barrier structures have been studied experimentally in the temperature range 130-330 K. The Schottky barrier height is found to increase and the ideality factor to decrease, as the temperature grows. The obtained results are analyzed in the framework of a non-uniform contact model. The average value and the standard deviation of a Schottky barrier height are determined to be 0.872 and 0.099 V, respectively, at T = 130220 K and 0.656 and 0.036 V, respectively, at T = 230330 K. Thermionic emission over the non-uniform barrier and tunneling are shown to be the dominant processes of charge transfer at a reverse bias voltage.

References

<ol>

<li> J.P. Colinge and C.A. Colinge, Physics of Semiconductor Device (Kluwer, Dordrecht, 2002).</li>
<li> V.I. Strikha, Contact Phenomena in Semiconductors (Vyshcha Shkola, Kyiv, 1982) (in Russian).</li>
<li> E. Arslan, S. Altindal, S. Ozcelik, and E. Ozbay, J. Appl. Phys. 105, 023705 (2009).&nbsp;<a href="https://doi.org/10.1063/1.3068202">CrossRef</a></li>
<li> D. Donoval, A. Chvala, R. Sramaty, J. Kovac, J.-F. Carlin, N. Grandjean, G. Pozzovivo, J. Kuzmik, D. Pogany, G. Strasser, and P. Kordos, Appl. Phys. Lett. 96, 223501 (2010).&nbsp;<a href="https://doi.org/10.1063/1.3442486">CrossRef</a></li>
<li> S. Huang et al., Semicond. Sci. Technol. 24, 055005 (2009).&nbsp;<a href="https://doi.org/10.1088/0268-1242/24/5/055005">CrossRef</a></li>
<li> V.V. Evstropov, Yu.V. Zhilyaev, M. Dzhumaeva, and N. Nazarov, Fiz. Tekh. Poluprovodn. 31, 152 (1997).</li>
<li> C.H. Lee and K.S. Lim, Appl. Phys. Lett. 75, 569 (1999).&nbsp;<a href="https://doi.org/10.1063/1.124444">CrossRef</a></li>
<li> D.M. Sathaiyaa and S. Karmalkar, J. Appl. Phys. 99, 093701 (2006).&nbsp;<a href="https://doi.org/10.1063/1.2191620">CrossRef</a></li>
<li> J.W.P. Hsu, M.J. Manfra, R.J. Molnar, B. Heying, and J.S. Speck, Appl. Phys. Lett. 81, 79 (2002).&nbsp;<a href="https://doi.org/10.1063/1.1490147">CrossRef</a></li>
<li> J.H. Werner and H.H. Guttler, J. Appl. Phys. 69, 1522 (1991).&nbsp;<a href="https://doi.org/10.1063/1.347243">CrossRef</a></li>
<li> J.P. Sullivan, R.T.Tung, M.R. Pinto, and W.R. Graham, J. Appl. Phys. 70, 7403 (1991).&nbsp;<a href="https://doi.org/10.1063/1.349737">CrossRef</a></li>
<li> R.T. Tung, Phys. Rev. B 45, 13509 (1992).&nbsp;<a href="https://doi.org/10.1103/PhysRevB.45.13509">CrossRef</a></li>
<li> K. Sarpatwari, S.E. Mohney, and O.O. Awadelkarim, J. Appl. Phys. 109, 014510 (2011).&nbsp;<a href="https://doi.org/10.1063/1.3530868">CrossRef</a></li>
<li> M. Biber, O. Gullu, S. Forment, R.L. Van Meirhaeghe, and A. Turut, Semicond. Sci. Technol. 21, 1 (2006).&nbsp;<a href="https://doi.org/10.1088/0268-1242/21/1/001">CrossRef</a></li>
<li> I. Tascioglu, U. Aydemir, and S. Altindal, J. Appl. Phys. 108, 064506 (2010).&nbsp;<a href="https://doi.org/10.1063/1.3468376">CrossRef</a></li>
<li> N. Yildirim, K. Ejderha, and A. Turut, J. Appl. Phys. 108, 114506 (2010).&nbsp;<a href="https://doi.org/10.1063/1.3517810">CrossRef</a></li>
<li> M. Mamor, J. Phys. Condens. Matter 21, 335802 (2009).&nbsp;<a href="https://doi.org/10.1088/0953-8984/21/33/335802">CrossRef</a></li>
<li> F. Iucolano, F. Roccaforte, F. Giannazzo, and V. Raineri, J. Appl. Phys. 102, 113701 (2007).&nbsp;<a href="https://doi.org/10.1063/1.2817647">CrossRef</a></li>
<li> F. Iucolano, F. Roccaforte, F. Giannazzo, and V. Raineri, Appl. Phys. Lett. 90, 092119 (2007).&nbsp;<a href="https://doi.org/10.1063/1.2710770">CrossRef</a></li>
<li> S.K. Cheung and N.W. Cheung, Appl. Phys. Lett. 49, 85 (1986).&nbsp;<a href="https://doi.org/10.1063/1.97359">CrossRef</a></li>
<li> D. Gromov and V. Pugachevich, Appl. Phys. A 59, 331 (1994).&nbsp;<a href="https://doi.org/10.1007/BF00348239">CrossRef</a></li>
<li> D.K. Schroder, Semiconductor Material and Device Characterization (Wiley, Hoboken, NJ, 2006).</li>
<li> S. Zhu, R.L. Van Meirhaeghe, C. Detavernier,G.-P. Ru, B.-Z. Li, and F. Cardon, Solid State Commun. 112, 611 (1999).&nbsp;<a href="https://doi.org/10.1016/S0038-1098(99)00404-4">CrossRef</a></li>
<li> M.O. Aboelfotoh, J. Appl. Phys. 66, 262 (1989).&nbsp;<a href="https://doi.org/10.1063/1.343867">CrossRef</a></li>
<li> V.G. Bozhkov and A.V. Shmargunov, J. Appl. Phys. 109, 113718 (2011).&nbsp;<a href="https://doi.org/10.1063/1.3587233">CrossRef</a></li>
<li> T. Markvart and L. Castaner, Practical Handbook of Photovoltaics. Fundamentals and Application (Elsevier, New York, 2003).</li>
<li> R.F. Schmitsdorf, T.U. Kampen, and W. Monch, J. Vac. Sci. Technol. B 15, 1221 (1997).&nbsp;<a href="https://doi.org/10.1116/1.589442">CrossRef</a></li>
<li> T.P. Chen, T.C. Lee, C.C. Ling, C.D. Beling, and S. Fung, Solid State Electron. 36, 949 (1993).&nbsp;<a href="https://doi.org/10.1016/0038-1101(93)90109-4">CrossRef</a></li>
<li> Y.-L. Jiang, G.-P. Rua, F. Lu, X.-P. Qu, B.-Z. Li, and S. Yang, J. Appl. Phys. 93, 866 (2003).&nbsp;<a href="https://doi.org/10.1063/1.1527714">CrossRef</a></li>
<li> J.M. Andrews and M.P. Lepselter, Solid State Electron. 13, 1011 (1970).&nbsp;<a href="https://doi.org/10.1016/0038-1101(70)90098-5">CrossRef</a></li>

</ol>

Downloads

Published

2018-10-05

How to Cite

Olikh, O. Y. (2018). Features of Charge Transport in Mo/n-Si Structures with a Schottky Barrier. Ukrainian Journal of Physics, 58(2), 126. https://doi.org/10.15407/ujpe58.02.0126

Issue

Section

Solid matter

Most read articles by the same author(s)