Nanophysics and Antiviral Therapy

  • V. Lysenko V.E. Lashkaryov Institute of Semiconductor Physics, Nat. Acad. of Sci. of Ukraine
  • V. Lozovski V.E. Lashkaryov Institute of Semiconductor Physics, Nat. Acad. of Sci. of Ukraine, Institute of High Technologies, Taras Shevchenko National University of Kyiv
  • M. Spivak D.K. Zabolotnyi Institute of Microbiology and Virology, Nat. Acad. of Sci. of Ukraine
Keywords: plasmon-polariton, nanoparticle–virus systems


A new mechanism of interaction between viruses and nanoparticles is proposed. The mechanism is based on the local-field enhancement effect inherent only in nano-objects and can manifest itself in nanoparticle–virus systems. The basic idea consists in vacuum fluctuations that are always present in any physical system. This mechanism is universal and does not depend on the details of nanoparticle and virus structures, which was confirmed by numerous experiments carried out by us and in other scientific groups. A new method of purification of biofluids from nano-objects such as nanoparticles and viruses is also discussed. The method is based on a selective interaction between nano-objects and either a nanostructured surface, along which a surface plasmon-polariton propagates, or a system of nanothreads, on which a local plasmon-polariton is excited. On the basis of the method proposed for weakening the virus activity due to the action of a suspension of nanoparticles, a new effective way for the production of human leukocytic interferon has been developed and verified experimentally.


  1. H.-W. Fink and Ch. Schonenberger, Nature 398, 407 (1999).

  2. D. Porath, A. Bezryadin, S. de Vries, and C. Dekker, Nature 403, 635 (2000).

  3. O.V. Salata, J. Nanobiotechnol. 2, 3 (2004).

  4. H.-E. Schaefer, Nanoscience. The Science of the Small in Physics, Engineering, Chemistry, Biology and Medicine (Springer, Berlin, 2010).

  5. Yu.A. Berlin, A.L. Burin, and M.A. Ratner, Super-lattices Microstruct. 28, 241 (2000).

  6. S. Brasselet, Adv. Opt. Photon. 3, 205 (2011).

  7. J.P. Jagtap, T.H. Jadhav, and D. Utpal, Scient. J. Crop. Sci. 1, 9 (2012).

  8. T.A. Delchar, Physics in Medical Diagnostics (Springer, Berlin, 1997).

  9. Surface Polaritons: Electromagnetic Waves at Surfaces and Interfaces, edited by V.M. Agranovich and D.L. Mills (Amsterdam, North-Holland, 1982).

  10. J. Davies, Nanobiology 3, 5 (1994).

  11. J. Homola, Anal. Bioanal. Chem. 377, 528 (2003).

  12. N.F. Starodub, T.L. Dibrova, Yu.M. Shyrshov, and K.V. Kostyukevich, Ukr. Biokim. Zh. 71, 33 (1999).

  13. Optical Sensors. Industrial Enviromental and Diagnostic Applications, edited by R. Narayanaswamy and O.S. Wolfbeis (Springer, Berlin, 2004).

  14. B. Della Ventura, L. Schiavo, C. Altucci, R. Esposito, and R. Velotta, Biomed. Opt. Express 2, 3223 (2011).

  15. C. Chen, J. Peng, H. Xia, Q. Wu, L. Zeng, H. Xu, H. Tang, Z. Zhang, X. Zhu, D. Pang, and Y. Li, Nanotechnology 21, 095101 (2010).

  16. C.-C. Youa, A. Chompoosora, and V.M. Rotello, Nano Today 2, 34 (2007).

  17. G.A. Silva, Nature Reviews Neuroscience 7, 65 (2006).

  18. D.A. Giljohann, D.S. Seferos,W.L. Daniel, M.D. Massich, P.C. Patel, and C.A. Mirkin, Angew. Chem. 49, 3280 (2010).

  19. Nanoparticles in Biology and Medicine, edited by M. Soloviev (Humana Press, New York, 2012).

  20. L. Zhang, F.X. Gu, J.M. Chan, A.Z. Wang, R.S. Langer, and O.C. Farokhzad, Clin. Pharmacol. Ther. 83, 761 (2008).

  21. M. Singh, S. Singh, S. Prasad, and I.S. Gamhir, Digest J. Nanomater. Biostruct. 3, 115 (2008).

  22. J.M. Provenzale and G.A. Silva, Am. J. Neuroradiol. 30, 1293 (2009).

  23. A.Z. Wang, F. Gu, L. Zhang, J.M. Chan, A. Radovich-Moreno, M.R. Shaikh, and O.C. Farokhzad, Expert Opin. Biol. Ther. 8, 1063 (2008).

  24. I.L. Medintz1, H.T. Uyeda, E.R. Goldman, and H. Mattoussi, Nature Mater. 4, 435 (2005).

  25. B.H. Bairamov, V.V. Toporov, F.B. Bayramov, M. Petukhov, E. Glazunov, A.B. Shchegolev, Y. Li, D. Ramadurai, P. Shi, M. Dutta, M.A. Stroscio, and G. Irmer, Mol. J. Phys. Sci. 5, 320 (2006).

  26. W.H. De Jong and P.J.A. Borm, Int. J. Nanomed. 3, 133 (2008).

  27. J. Li, X. Ni, and K.W. Leong, J. Biomed. Mater. Res. A 65, 196 (2003).

  28. A. Blanco, K. Kostarelos, and M. Prato, Curr. Opin. Chem. Biol. 9, 674 (2005).

  29. N.A. Mazurkova, Y.E. Spitsyna, N.V. Shikina, Z.R. Ismagilov, S.N. Zagrebel'nyi, and E.I. Ryabchikova, Ross. Nanotekhnol. 5, 417 (2010).

  30. Y. Fujimori, T. Sato, T. Hayata, T. Nagao, M. Nakayama, T. Nakayama, R. Sugamata, and K. Suzuki, Appl. Environ. Microbiol. 78, 951 (2012).

  31. I.O. Shmarakov, M.M. Marchenko, and M.Ya. Spivak, Basic Virology (Chernivtsi Nat. Univ., Chernivtsi, 2011) (in Ukrainian).

  32. E.V. Koonin, T.G. Senkevich, and V.V. Dolja, Biol. Direct. 1, 29 (2006).

  33. S.J. Flint, I.W. Enquist, R.M. Krug, V.R. Racaniello, and A.M. Skalka, Principles of Virology. Molecular biology, Pathogenetics, and Control (ASM Press, Washington, DC, 1999).

  34. W.H. Roos, R. Bruinsma, and G.J.L. Wuite, Nature Phys. 6, 733 (2010).

  35. P. Wild, Meth. Cell Biol. 88, 497 (2008).

  36. Ch. Girard and A. Dereux, Rep. Prog. Phys. 59, 657 (1999).

  37. A. Lewis, H. Taha, A. Strinkovski, A. Manevich, A. Khatchatouriants, R. Dekhter, and E. Ammanann, Nature Biotech. 21, 1378 (2003).

  38. E. Betzig, A. Lewis, A. Harootunian, M. Isaacson, and E. Krarschmer, Biophys. J. 49, 269 (1986).

  39. B. Hecht, B. Sick, U.P. Wild, V. Deckert, R. Zenobi, O.J.F. Martin, and D.W. Pohl, J. Chem. Phys. 112, 7761 (2000).

  40. V.Z. Lozovski, J. Beermann, and S.I. Bozhevolnyi, Phys. Rev. B 75, 045438 (2007).

  41. A. Zybin, Y.A. Kuritsyn, E.L. Gurevich, V.V. Temchura, K. Uberla, and K. Niemax, Plasmonics 5, 31 (2010).

  42. S. Wang, X. Shan, U. Patel, X. Huang, J. Lu, J. Li, and N. Tao, Proc. Nat. Acad. Sci. USA 107, 16028 (2010).

  43. V. Lozovski, J Comput. Theor. Nanosci. 9, 859 (2012).

  44. Ch. Girard, Ch. Joachim, and S. Gauthier, Rep. Prog. Phys. 63, 893 (2000).

  45. M. Xiao, S. Bozhevolnyi, and O. Keller, Appl. Phys. A 62, 115 (1996).

  46. C.-Z. Wu, X.-B. Mao, Z.-F. Xu, and H.-N. Ye, Optoelectr. Lett. 3, 289 (2007).

  47. V. Lozovski, J. Comput. Theor. Nanosci. 7, 2077 (2010).

  48. V. Lozovski and V. Piatnytsia, in Proceedings of the International Conference of Young Scientists on Modern Problems of Theoretical Physocs (Bogolubov Inst. Theor. Phys. of the NAS of Ukraine, Kyiv, 2011), p. 30.

  49. O. Keller, Phys. Rep. 268, 85 (1996).

  50. Yu.S. Barash and V.L. Ginzburg, Usp. Fiz. Nauk 143, 345 (1984).

  51. Yu.S. Barash, Van der Waals Forces (Nauka, Moscow, 1988) (in Russian).

  52. V. Lozovski, V. Lysenko, V. Pyatnitsia, M. Spivak, Semicond. Phys. Quant. Electr. Optoelectr. 14, 489 (2011).

  53. Preclinical Drug Studies. Methodical Guide, edited by O.V. Stefanov (Ministry of Health of Ukraine, Kyiv, 2001) (in Ukrainian).

  54. A. Bouhelier, Microsc. Res. Techn. 69, 563 (2006).

  55. A.V. Goncharenkoa, H.-Ch. Changa, and J.-K. Wang, Ultramicroscopy 107, 151 (2007).

  56. B.M. Ross and L.P. Lee, Nanotechnology 19, 2752001 (2008).

  57. S. Lanone, F. Rogerieux, J. Geys, A. Dupont, E. Maillot-Marechal, J. Boczkowski, G. Lacroix, and P. Hoet, Part. Fibre Toxicol. 6, 14 (2009).

  58. V. Lozovski, V. Lysenko, M. Spivak, and V. Sterligov, Semicond. Phys. Quant. Electr. Optoelectr. 15, 80 (2012).

  59. V.A. Sterligov, Y. Men, and P.M. Lytvyn, Opt. Express 18, 43 (2010).

  60. T.A. Leskova, A.A. Maradudin, and W. Zierau, Opt. Commun. 249, 23 (2005).

  61. V. Lozovski, S. Schrader, and A. Tsykhonya, Opt. Commun. 282, 3257 (2009).

  62. A.A. Maradudin and D.L. Mills, Phys. Rev. B 11, 1392 (1975).

  63. J.M. Elson and R.H. Ritchie, Phys. Status Solidi B 62, 461 (1974).

  64. A.A. Abrikosov, L.P. Gor'kov, and I.E. Dzyaloshinskij, Methods of Quantum Field Theory in Statistical Physics (Prentice Hall, Englewood Cliffs, N.J., 1963).

  65. S. Bozhevolnyi and A. Evlyukhin, Surf. Sci. 590, 173 (2005).

  66. A.D. Jaghjaian, Proc. IEEE 68, 248 (1980).

  67. M.V. Berry and S. Klein, J. Mod. Opt. 43, 2139 (1996).

  68. Human Leukocyte Interferon Manufacture Regulations No. 302-82 (1982).

  69. Russian Federation Patent No. 2080873, date of priority 27.12.1993.

  70. Russian Federation Patent No. 2066188, date of priority 13.04.1993.

  71. Russian Federation Patent No. 2140284, date of priority 06.07.1998.

  72. N.Ya. Spivak, L.N. Lazarenko, and O.N. Mikhailenko, Interferon and the System of Mononuclear Phagocytes (Ukrainian Phytosociological Center, Kyiv, 2002) (in Russian).

  73. B.J. Marquis, Z. Liu, K.L. Braun, and C.L. Haynes, Analyst 136, 3478 (2011).

  74. B.J. Kirby and E.F. Hasselbrink, in Electorpheresis in Practice, Electrophoresis, Zeta Potential of Microfluidic Substrates: 1. Theory, Experimental Techniques, and Effects on Separations (Wiley, Weinheim, 2004), Vol. 25, p. 187.

  75. Y. Kim, R.C. Jonson, J. Li, J.T. Hupp, and G.C. Schatz, Chem. Phys. Lett. 352, 421 (2002).

  76. P.K. Jain, K. S.Lee, I.H. EI-Sayed, and M.A. EI-Sayed, J. Phys. Chem. B 110, 7238 (2006).

  77. V. Lozovski, V. Lysenko, V. Piatnytsia, O. Scherbakov, N. Zholobak, and M. Spivak, J. Bionanosci. 6, 109 (2012).

How to Cite
Lysenko, V., Lozovski, V., & Spivak, M. (2018). Nanophysics and Antiviral Therapy. Ukrainian Journal of Physics, 58(1), 77.