Nanophysics and Antiviral Therapy
DOI:
https://doi.org/10.15407/ujpe58.01.0077Keywords:
plasmon-polariton, nanoparticle–virus systemsAbstract
A new mechanism of interaction between viruses and nanoparticles is proposed. The mechanism is based on the local-field enhancement effect inherent only in nano-objects and can manifest itself in nanoparticle–virus systems. The basic idea consists in vacuum fluctuations that are always present in any physical system. This mechanism is universal and does not depend on the details of nanoparticle and virus structures, which was confirmed by numerous experiments carried out by us and in other scientific groups. A new method of purification of biofluids from nano-objects such as nanoparticles and viruses is also discussed. The method is based on a selective interaction between nano-objects and either a nanostructured surface, along which a surface plasmon-polariton propagates, or a system of nanothreads, on which a local plasmon-polariton is excited. On the basis of the method proposed for weakening the virus activity due to the action of a suspension of nanoparticles, a new effective way for the production of human leukocytic interferon has been developed and verified experimentally.
References
<li> H.-W. Fink and Ch. Schonenberger, Nature 398, 407 (1999). <a href="https://doi.org/10.1038/18855">https://doi.org/10.1038/18855</a></li>
<li> D. Porath, A. Bezryadin, S. de Vries, and C. Dekker, Nature 403, 635 (2000). <a href="https://doi.org/10.1038/35001029">https://doi.org/10.1038/35001029</a></li>
<li> O.V. Salata, J. Nanobiotechnol. 2, 3 (2004).</li>
<li> H.-E. Schaefer, Nanoscience. The Science of the Small in Physics, Engineering, Chemistry, Biology and Medicine (Springer, Berlin, 2010).</li>
<li> Yu.A. Berlin, A.L. Burin, and M.A. Ratner, Super-lattices Microstruct. 28, 241 (2000). <a href="https://doi.org/10.1006/spmi.2000.0915">https://doi.org/10.1006/spmi.2000.0915</a></li>
<li> S. Brasselet, Adv. Opt. Photon. 3, 205 (2011). <a href="https://doi.org/10.1364/AOP.3.000205">https://doi.org/10.1364/AOP.3.000205</a></li>
<li> J.P. Jagtap, T.H. Jadhav, and D. Utpal, Scient. J. Crop. Sci. 1, 9 (2012).</li>
<li> T.A. Delchar, Physics in Medical Diagnostics (Springer, Berlin, 1997).</li>
<li> Surface Polaritons: Electromagnetic Waves at Surfaces and Interfaces, edited by V.M. Agranovich and D.L. Mills (Amsterdam, North-Holland, 1982).</li>
<li> J. Davies, Nanobiology 3, 5 (1994).</li>
<li> J. Homola, Anal. Bioanal. Chem. 377, 528 (2003). <a href="https://doi.org/10.1007/s00216-003-2101-0">https://doi.org/10.1007/s00216-003-2101-0</a></li>
<li> N.F. Starodub, T.L. Dibrova, Yu.M. Shyrshov, and K.V. Kostyukevich, Ukr. Biokim. Zh. 71, 33 (1999).</li>
<li> Optical Sensors. Industrial Enviromental and Diagnostic Applications, edited by R. Narayanaswamy and O.S. Wolfbeis (Springer, Berlin, 2004).</li>
<li> B. Della Ventura, L. Schiavo, C. Altucci, R. Esposito, and R. Velotta, Biomed. Opt. Express 2, 3223 (2011). <a href="https://doi.org/10.1364/BOE.2.003223">https://doi.org/10.1364/BOE.2.003223</a></li>
<li> C. Chen, J. Peng, H. Xia, Q. Wu, L. Zeng, H. Xu, H. Tang, Z. Zhang, X. Zhu, D. Pang, and Y. Li, Nanotechnology 21, 095101 (2010). <a href="https://doi.org/10.1088/0957-4484/21/9/095101">https://doi.org/10.1088/0957-4484/21/9/095101</a></li>
<li> C.-C. Youa, A. Chompoosora, and V.M. Rotello, Nano Today 2, 34 (2007). <a href="https://doi.org/10.1016/S1748-0132(07)70085-3">https://doi.org/10.1016/S1748-0132(07)70085-3</a></li>
<li> G.A. Silva, Nature Reviews Neuroscience 7, 65 (2006). <a href="https://doi.org/10.1038/nrn1827">https://doi.org/10.1038/nrn1827</a></li>
<li> D.A. Giljohann, D.S. Seferos,W.L. Daniel, M.D. Massich, P.C. Patel, and C.A. Mirkin, Angew. Chem. 49, 3280 (2010). <a href="https://doi.org/10.1002/anie.200904359">https://doi.org/10.1002/anie.200904359</a></li>
<li> Nanoparticles in Biology and Medicine, edited by M. Soloviev (Humana Press, New York, 2012).</li>
<li> L. Zhang, F.X. Gu, J.M. Chan, A.Z. Wang, R.S. Langer, and O.C. Farokhzad, Clin. Pharmacol. Ther. 83, 761 (2008). <a href="https://doi.org/10.1038/sj.clpt.6100400">https://doi.org/10.1038/sj.clpt.6100400</a></li>
<li> M. Singh, S. Singh, S. Prasad, and I.S. Gamhir, Digest J. Nanomater. Biostruct. 3, 115 (2008).</li>
<li> J.M. Provenzale and G.A. Silva, Am. J. Neuroradiol. 30, 1293 (2009). <a href="https://doi.org/10.3174/ajnr.A1590">https://doi.org/10.3174/ajnr.A1590</a></li>
<li> A.Z. Wang, F. Gu, L. Zhang, J.M. Chan, A. Radovich-Moreno, M.R. Shaikh, and O.C. Farokhzad, Expert Opin. Biol. Ther. 8, 1063 (2008). <a href="https://doi.org/10.1517/14712598.8.8.1063">https://doi.org/10.1517/14712598.8.8.1063</a></li>
<li> I.L. Medintz1, H.T. Uyeda, E.R. Goldman, and H. Mattoussi, Nature Mater. 4, 435 (2005).</li>
<li> B.H. Bairamov, V.V. Toporov, F.B. Bayramov, M. Petukhov, E. Glazunov, A.B. Shchegolev, Y. Li, D. Ramadurai, P. Shi, M. Dutta, M.A. Stroscio, and G. Irmer, Mol. J. Phys. Sci. 5, 320 (2006).</li>
<li> W.H. De Jong and P.J.A. Borm, Int. J. Nanomed. 3, 133 (2008). <a href="https://doi.org/10.2147/IJN.S596">https://doi.org/10.2147/IJN.S596</a></li>
<li> J. Li, X. Ni, and K.W. Leong, J. Biomed. Mater. Res. A 65, 196 (2003). <a href="https://doi.org/10.1002/jbm.a.10444">https://doi.org/10.1002/jbm.a.10444</a></li>
<li> A. Blanco, K. Kostarelos, and M. Prato, Curr. Opin. Chem. Biol. 9, 674 (2005). <a href="https://doi.org/10.1016/j.cbpa.2005.10.005">https://doi.org/10.1016/j.cbpa.2005.10.005</a></li>
<li> N.A. Mazurkova, Y.E. Spitsyna, N.V. Shikina, Z.R. Ismagilov, S.N. Zagrebel'nyi, and E.I. Ryabchikova, Ross. Nanotekhnol. 5, 417 (2010). <a href="https://doi.org/10.1134/S1995078010050174">https://doi.org/10.1134/S1995078010050174</a></li>
<li> Y. Fujimori, T. Sato, T. Hayata, T. Nagao, M. Nakayama, T. Nakayama, R. Sugamata, and K. Suzuki, Appl. Environ. Microbiol. 78, 951 (2012). <a href="https://doi.org/10.1128/AEM.06284-11">https://doi.org/10.1128/AEM.06284-11</a></li>
<li> I.O. Shmarakov, M.M. Marchenko, and M.Ya. Spivak, Basic Virology (Chernivtsi Nat. Univ., Chernivtsi, 2011) (in Ukrainian).</li>
<li> E.V. Koonin, T.G. Senkevich, and V.V. Dolja, Biol. Direct. 1, 29 (2006). <a href="https://doi.org/10.1186/1745-6150-1-29">https://doi.org/10.1186/1745-6150-1-29</a></li>
<li> S.J. Flint, I.W. Enquist, R.M. Krug, V.R. Racaniello, and A.M. Skalka, Principles of Virology. Molecular biology, Pathogenetics, and Control (ASM Press, Washington, DC, 1999).</li>
<li> W.H. Roos, R. Bruinsma, and G.J.L. Wuite, Nature Phys. 6, 733 (2010).</li>
<li> P. Wild, Meth. Cell Biol. 88, 497 (2008). <a href="https://doi.org/10.1016/S0091-679X(08)00425-1">https://doi.org/10.1016/S0091-679X(08)00425-1</a></li>
<li> Ch. Girard and A. Dereux, Rep. Prog. Phys. 59, 657 (1999). <a href="https://doi.org/10.1088/0034-4885/59/5/002">https://doi.org/10.1088/0034-4885/59/5/002</a></li>
<li> A. Lewis, H. Taha, A. Strinkovski, A. Manevich, A. Khatchatouriants, R. Dekhter, and E. Ammanann, Nature Biotech. 21, 1378 (2003). <a href="https://doi.org/10.1038/nbt898">https://doi.org/10.1038/nbt898</a></li>
<li> E. Betzig, A. Lewis, A. Harootunian, M. Isaacson, and E. Krarschmer, Biophys. J. 49, 269 (1986). <a href="https://doi.org/10.1016/S0006-3495(86)83640-2">https://doi.org/10.1016/S0006-3495(86)83640-2</a></li>
<li> B. Hecht, B. Sick, U.P. Wild, V. Deckert, R. Zenobi, O.J.F. Martin, and D.W. Pohl, J. Chem. Phys. 112, 7761 (2000). <a href="https://doi.org/10.1063/1.481382">https://doi.org/10.1063/1.481382</a></li>
<li> V.Z. Lozovski, J. Beermann, and S.I. Bozhevolnyi, Phys. Rev. B 75, 045438 (2007). <a href="https://doi.org/10.1103/PhysRevB.75.045438">https://doi.org/10.1103/PhysRevB.75.045438</a></li>
<li> A. Zybin, Y.A. Kuritsyn, E.L. Gurevich, V.V. Temchura, K. Uberla, and K. Niemax, Plasmonics 5, 31 (2010). <a href="https://doi.org/10.1007/s11468-009-9111-5">https://doi.org/10.1007/s11468-009-9111-5</a></li>
<li> S. Wang, X. Shan, U. Patel, X. Huang, J. Lu, J. Li, and N. Tao, Proc. Nat. Acad. Sci. USA 107, 16028 (2010). <a href="https://doi.org/10.1073/pnas.1005264107">https://doi.org/10.1073/pnas.1005264107</a></li>
<li> V. Lozovski, J Comput. Theor. Nanosci. 9, 859 (2012). <a href="https://doi.org/10.1166/jctn.2012.2107">https://doi.org/10.1166/jctn.2012.2107</a></li>
<li> Ch. Girard, Ch. Joachim, and S. Gauthier, Rep. Prog. Phys. 63, 893 (2000). <a href="https://doi.org/10.1088/0034-4885/63/6/202">https://doi.org/10.1088/0034-4885/63/6/202</a></li>
<li> M. Xiao, S. Bozhevolnyi, and O. Keller, Appl. Phys. A 62, 115 (1996).</li>
<li> C.-Z. Wu, X.-B. Mao, Z.-F. Xu, and H.-N. Ye, Optoelectr. Lett. 3, 289 (2007). <a href="https://doi.org/10.1007/s11801-007-6091-6">https://doi.org/10.1007/s11801-007-6091-6</a></li>
<li> V. Lozovski, J. Comput. Theor. Nanosci. 7, 2077 (2010). <a href="https://doi.org/10.1166/jctn.2010.1588">https://doi.org/10.1166/jctn.2010.1588</a></li>
<li> V. Lozovski and V. Piatnytsia, in Proceedings of the International Conference of Young Scientists on Modern Problems of Theoretical Physocs (Bogolubov Inst. Theor. Phys. of the NAS of Ukraine, Kyiv, 2011), p. 30.</li>
<li> O. Keller, Phys. Rep. 268, 85 (1996). <a href="https://doi.org/10.1016/0370-1573(95)00059-3">https://doi.org/10.1016/0370-1573(95)00059-3</a></li>
<li> Yu.S. Barash and V.L. Ginzburg, Usp. Fiz. Nauk 143, 345 (1984). <a href="https://doi.org/10.3367/UFNr.0143.198407a.0345">https://doi.org/10.3367/UFNr.0143.198407a.0345</a></li>
<li> Yu.S. Barash, Van der Waals Forces (Nauka, Moscow, 1988) (in Russian).</li>
<li> V. Lozovski, V. Lysenko, V. Pyatnitsia, M. Spivak, Semicond. Phys. Quant. Electr. Optoelectr. 14, 489 (2011). <a href="https://doi.org/10.15407/spqeo14.04.489">https://doi.org/10.15407/spqeo14.04.489</a></li>
<li> Preclinical Drug Studies. Methodical Guide, edited by O.V. Stefanov (Ministry of Health of Ukraine, Kyiv, 2001) (in Ukrainian).</li>
<li> A. Bouhelier, Microsc. Res. Techn. 69, 563 (2006). <a href="https://doi.org/10.1002/jemt.20328">https://doi.org/10.1002/jemt.20328</a></li>
<li> A.V. Goncharenkoa, H.-Ch. Changa, and J.-K. Wang, Ultramicroscopy 107, 151 (2007). <a href="https://doi.org/10.1016/j.ultramic.2006.06.004">https://doi.org/10.1016/j.ultramic.2006.06.004</a></li>
<li> B.M. Ross and L.P. Lee, Nanotechnology 19, 2752001 (2008). <a href="https://doi.org/10.1088/0957-4484/19/27/275201">https://doi.org/10.1088/0957-4484/19/27/275201</a></li>
<li> S. Lanone, F. Rogerieux, J. Geys, A. Dupont, E. Maillot-Marechal, J. Boczkowski, G. Lacroix, and P. Hoet, Part. Fibre Toxicol. 6, 14 (2009). <a href="https://doi.org/10.1186/1743-8977-6-14">https://doi.org/10.1186/1743-8977-6-14</a></li>
<li> V. Lozovski, V. Lysenko, M. Spivak, and V. Sterligov, Semicond. Phys. Quant. Electr. Optoelectr. 15, 80 (2012). <a href="https://doi.org/10.15407/spqeo15.01.080">https://doi.org/10.15407/spqeo15.01.080</a></li>
<li> V.A. Sterligov, Y. Men, and P.M. Lytvyn, Opt. Express 18, 43 (2010). <a href="https://doi.org/10.1364/OE.18.000043">https://doi.org/10.1364/OE.18.000043</a></li>
<li> T.A. Leskova, A.A. Maradudin, and W. Zierau, Opt. Commun. 249, 23 (2005). <a href="https://doi.org/10.1016/j.optcom.2005.01.014">https://doi.org/10.1016/j.optcom.2005.01.014</a></li>
<li> V. Lozovski, S. Schrader, and A. Tsykhonya, Opt. Commun. 282, 3257 (2009). <a href="https://doi.org/10.1016/j.optcom.2009.05.032">https://doi.org/10.1016/j.optcom.2009.05.032</a></li>
<li> A.A. Maradudin and D.L. Mills, Phys. Rev. B 11, 1392 (1975). <a href="https://doi.org/10.1103/PhysRevB.11.1392">https://doi.org/10.1103/PhysRevB.11.1392</a></li>
<li> J.M. Elson and R.H. Ritchie, Phys. Status Solidi B 62, 461 (1974). <a href="https://doi.org/10.1002/pssb.2220620215">https://doi.org/10.1002/pssb.2220620215</a></li>
<li> A.A. Abrikosov, L.P. Gor'kov, and I.E. Dzyaloshinskij, Methods of Quantum Field Theory in Statistical Physics (Prentice Hall, Englewood Cliffs, N.J., 1963).</li>
<li> S. Bozhevolnyi and A. Evlyukhin, Surf. Sci. 590, 173 (2005). <a href="https://doi.org/10.1016/j.susc.2005.06.010">https://doi.org/10.1016/j.susc.2005.06.010</a></li>
<li> A.D. Jaghjaian, Proc. IEEE 68, 248 (1980). <a href="https://doi.org/10.1109/PROC.1980.11620">https://doi.org/10.1109/PROC.1980.11620</a></li>
<li> M.V. Berry and S. Klein, J. Mod. Opt. 43, 2139 (1996). <a href="https://doi.org/10.1080/09500349608232876">https://doi.org/10.1080/09500349608232876</a></li>
<li> Human Leukocyte Interferon Manufacture Regulations No. 302-82 (1982).</li>
<li> Russian Federation Patent No. 2080873, date of priority 27.12.1993.</li>
<li> Russian Federation Patent No. 2066188, date of priority 13.04.1993.</li>
<li> Russian Federation Patent No. 2140284, date of priority 06.07.1998.</li>
<li> N.Ya. Spivak, L.N. Lazarenko, and O.N. Mikhailenko, Interferon and the System of Mononuclear Phagocytes (Ukrainian Phytosociological Center, Kyiv, 2002) (in Russian).</li>
<li> B.J. Marquis, Z. Liu, K.L. Braun, and C.L. Haynes, Analyst 136, 3478 (2011). <a href="https://doi.org/10.1039/C0AN00785D">https://doi.org/10.1039/C0AN00785D</a></li>
<li> B.J. Kirby and E.F. Hasselbrink, in Electorpheresis in Practice, Electrophoresis, Zeta Potential of Microfluidic Substrates: 1. Theory, Experimental Techniques, and Effects on Separations (Wiley, Weinheim, 2004), Vol. 25, p. 187.</li>
<li> Y. Kim, R.C. Jonson, J. Li, J.T. Hupp, and G.C. Schatz, Chem. Phys. Lett. 352, 421 (2002). <a href="https://doi.org/10.1016/S0009-2614(01)01506-8">https://doi.org/10.1016/S0009-2614(01)01506-8</a></li>
<li> P.K. Jain, K. S.Lee, I.H. EI-Sayed, and M.A. EI-Sayed, J. Phys. Chem. B 110, 7238 (2006). <a href="https://doi.org/10.1021/jp057170o">https://doi.org/10.1021/jp057170o</a></li>
<li> V. Lozovski, V. Lysenko, V. Piatnytsia, O. Scherbakov, N. Zholobak, and M. Spivak, J. Bionanosci. 6, 109 (2012).</li>
</ol>
Downloads
Published
How to Cite
Issue
Section
License
Copyright Agreement
License to Publish the Paper
Kyiv, Ukraine
The corresponding author and the co-authors (hereon referred to as the Author(s)) of the paper being submitted to the Ukrainian Journal of Physics (hereon referred to as the Paper) from one side and the Bogolyubov Institute for Theoretical Physics, National Academy of Sciences of Ukraine, represented by its Director (hereon referred to as the Publisher) from the other side have come to the following Agreement:
1. Subject of the Agreement.
The Author(s) grant(s) the Publisher the free non-exclusive right to use the Paper (of scientific, technical, or any other content) according to the terms and conditions defined by this Agreement.
2. The ways of using the Paper.
2.1. The Author(s) grant(s) the Publisher the right to use the Paper as follows.
2.1.1. To publish the Paper in the Ukrainian Journal of Physics (hereon referred to as the Journal) in original language and translated into English (the copy of the Paper approved by the Author(s) and the Publisher and accepted for publication is a constitutive part of this License Agreement).
2.1.2. To edit, adapt, and correct the Paper by approval of the Author(s).
2.1.3. To translate the Paper in the case when the Paper is written in a language different from that adopted in the Journal.
2.2. If the Author(s) has(ve) an intent to use the Paper in any other way, e.g., to publish the translated version of the Paper (except for the case defined by Section 2.1.3 of this Agreement), to post the full Paper or any its part on the web, to publish the Paper in any other editions, to include the Paper or any its part in other collections, anthologies, encyclopaedias, etc., the Author(s) should get a written permission from the Publisher.
3. License territory.
The Author(s) grant(s) the Publisher the right to use the Paper as regulated by sections 2.1.1–2.1.3 of this Agreement on the territory of Ukraine and to distribute the Paper as indispensable part of the Journal on the territory of Ukraine and other countries by means of subscription, sales, and free transfer to a third party.
4. Duration.
4.1. This Agreement is valid starting from the date of signature and acts for the entire period of the existence of the Journal.
5. Loyalty.
5.1. The Author(s) warrant(s) the Publisher that:
– he/she is the true author (co-author) of the Paper;
– copyright on the Paper was not transferred to any other party;
– the Paper has never been published before and will not be published in any other media before it is published by the Publisher (see also section 2.2);
– the Author(s) do(es) not violate any intellectual property right of other parties. If the Paper includes some materials of other parties, except for citations whose length is regulated by the scientific, informational, or critical character of the Paper, the use of such materials is in compliance with the regulations of the international law and the law of Ukraine.
6. Requisites and signatures of the Parties.
Publisher: Bogolyubov Institute for Theoretical Physics, National Academy of Sciences of Ukraine.
Address: Ukraine, Kyiv, Metrolohichna Str. 14-b.
Author: Electronic signature on behalf and with endorsement of all co-authors.