Nanophysics and Antiviral Therapy

  • V. Lysenko V.E. Lashkaryov Institute of Semiconductor Physics, Nat. Acad. of Sci. of Ukraine
  • V. Lozovski V.E. Lashkaryov Institute of Semiconductor Physics, Nat. Acad. of Sci. of Ukraine, Institute of High Technologies, Taras Shevchenko National University of Kyiv
  • M. Spivak D.K. Zabolotnyi Institute of Microbiology and Virology, Nat. Acad. of Sci. of Ukraine
Keywords: plasmon-polariton, nanoparticle–virus systems

Abstract

A new mechanism of interaction between viruses and nanoparticles is proposed. The mechanism is based on the local-field enhancement effect inherent only in nano-objects and can manifest itself in nanoparticle–virus systems. The basic idea consists in vacuum fluctuations that are always present in any physical system. This mechanism is universal and does not depend on the details of nanoparticle and virus structures, which was confirmed by numerous experiments carried out by us and in other scientific groups. A new method of purification of biofluids from nano-objects such as nanoparticles and viruses is also discussed. The method is based on a selective interaction between nano-objects and either a nanostructured surface, along which a surface plasmon-polariton propagates, or a system of nanothreads, on which a local plasmon-polariton is excited. On the basis of the method proposed for weakening the virus activity due to the action of a suspension of nanoparticles, a new effective way for the production of human leukocytic interferon has been developed and verified experimentally.

References


  1. H.-W. Fink and Ch. Schonenberger, Nature 398, 407 (1999). https://doi.org/10.1038/18855

  2. D. Porath, A. Bezryadin, S. de Vries, and C. Dekker, Nature 403, 635 (2000). https://doi.org/10.1038/35001029

  3. O.V. Salata, J. Nanobiotechnol. 2, 3 (2004).

  4. H.-E. Schaefer, Nanoscience. The Science of the Small in Physics, Engineering, Chemistry, Biology and Medicine (Springer, Berlin, 2010).

  5. Yu.A. Berlin, A.L. Burin, and M.A. Ratner, Super-lattices Microstruct. 28, 241 (2000). https://doi.org/10.1006/spmi.2000.0915

  6. S. Brasselet, Adv. Opt. Photon. 3, 205 (2011). https://doi.org/10.1364/AOP.3.000205

  7. J.P. Jagtap, T.H. Jadhav, and D. Utpal, Scient. J. Crop. Sci. 1, 9 (2012).

  8. T.A. Delchar, Physics in Medical Diagnostics (Springer, Berlin, 1997).

  9. Surface Polaritons: Electromagnetic Waves at Surfaces and Interfaces, edited by V.M. Agranovich and D.L. Mills (Amsterdam, North-Holland, 1982).

  10. J. Davies, Nanobiology 3, 5 (1994).

  11. J. Homola, Anal. Bioanal. Chem. 377, 528 (2003). https://doi.org/10.1007/s00216-003-2101-0

  12. N.F. Starodub, T.L. Dibrova, Yu.M. Shyrshov, and K.V. Kostyukevich, Ukr. Biokim. Zh. 71, 33 (1999).

  13. Optical Sensors. Industrial Enviromental and Diagnostic Applications, edited by R. Narayanaswamy and O.S. Wolfbeis (Springer, Berlin, 2004).

  14. B. Della Ventura, L. Schiavo, C. Altucci, R. Esposito, and R. Velotta, Biomed. Opt. Express 2, 3223 (2011). https://doi.org/10.1364/BOE.2.003223

  15. C. Chen, J. Peng, H. Xia, Q. Wu, L. Zeng, H. Xu, H. Tang, Z. Zhang, X. Zhu, D. Pang, and Y. Li, Nanotechnology 21, 095101 (2010). https://doi.org/10.1088/0957-4484/21/9/095101

  16. C.-C. Youa, A. Chompoosora, and V.M. Rotello, Nano Today 2, 34 (2007). https://doi.org/10.1016/S1748-0132(07)70085-3

  17. G.A. Silva, Nature Reviews Neuroscience 7, 65 (2006). https://doi.org/10.1038/nrn1827

  18. D.A. Giljohann, D.S. Seferos,W.L. Daniel, M.D. Massich, P.C. Patel, and C.A. Mirkin, Angew. Chem. 49, 3280 (2010). https://doi.org/10.1002/anie.200904359

  19. Nanoparticles in Biology and Medicine, edited by M. Soloviev (Humana Press, New York, 2012).

  20. L. Zhang, F.X. Gu, J.M. Chan, A.Z. Wang, R.S. Langer, and O.C. Farokhzad, Clin. Pharmacol. Ther. 83, 761 (2008). https://doi.org/10.1038/sj.clpt.6100400

  21. M. Singh, S. Singh, S. Prasad, and I.S. Gamhir, Digest J. Nanomater. Biostruct. 3, 115 (2008).

  22. J.M. Provenzale and G.A. Silva, Am. J. Neuroradiol. 30, 1293 (2009). https://doi.org/10.3174/ajnr.A1590

  23. A.Z. Wang, F. Gu, L. Zhang, J.M. Chan, A. Radovich-Moreno, M.R. Shaikh, and O.C. Farokhzad, Expert Opin. Biol. Ther. 8, 1063 (2008). https://doi.org/10.1517/14712598.8.8.1063

  24. I.L. Medintz1, H.T. Uyeda, E.R. Goldman, and H. Mattoussi, Nature Mater. 4, 435 (2005).

  25. B.H. Bairamov, V.V. Toporov, F.B. Bayramov, M. Petukhov, E. Glazunov, A.B. Shchegolev, Y. Li, D. Ramadurai, P. Shi, M. Dutta, M.A. Stroscio, and G. Irmer, Mol. J. Phys. Sci. 5, 320 (2006).

  26. W.H. De Jong and P.J.A. Borm, Int. J. Nanomed. 3, 133 (2008). https://doi.org/10.2147/IJN.S596

  27. J. Li, X. Ni, and K.W. Leong, J. Biomed. Mater. Res. A 65, 196 (2003). https://doi.org/10.1002/jbm.a.10444

  28. A. Blanco, K. Kostarelos, and M. Prato, Curr. Opin. Chem. Biol. 9, 674 (2005). https://doi.org/10.1016/j.cbpa.2005.10.005

  29. N.A. Mazurkova, Y.E. Spitsyna, N.V. Shikina, Z.R. Ismagilov, S.N. Zagrebel'nyi, and E.I. Ryabchikova, Ross. Nanotekhnol. 5, 417 (2010). https://doi.org/10.1134/S1995078010050174

  30. Y. Fujimori, T. Sato, T. Hayata, T. Nagao, M. Nakayama, T. Nakayama, R. Sugamata, and K. Suzuki, Appl. Environ. Microbiol. 78, 951 (2012). https://doi.org/10.1128/AEM.06284-11

  31. I.O. Shmarakov, M.M. Marchenko, and M.Ya. Spivak, Basic Virology (Chernivtsi Nat. Univ., Chernivtsi, 2011) (in Ukrainian).

  32. E.V. Koonin, T.G. Senkevich, and V.V. Dolja, Biol. Direct. 1, 29 (2006). https://doi.org/10.1186/1745-6150-1-29

  33. S.J. Flint, I.W. Enquist, R.M. Krug, V.R. Racaniello, and A.M. Skalka, Principles of Virology. Molecular biology, Pathogenetics, and Control (ASM Press, Washington, DC, 1999).

  34. W.H. Roos, R. Bruinsma, and G.J.L. Wuite, Nature Phys. 6, 733 (2010).

  35. P. Wild, Meth. Cell Biol. 88, 497 (2008). https://doi.org/10.1016/S0091-679X(08)00425-1

  36. Ch. Girard and A. Dereux, Rep. Prog. Phys. 59, 657 (1999). https://doi.org/10.1088/0034-4885/59/5/002

  37. A. Lewis, H. Taha, A. Strinkovski, A. Manevich, A. Khatchatouriants, R. Dekhter, and E. Ammanann, Nature Biotech. 21, 1378 (2003). https://doi.org/10.1038/nbt898

  38. E. Betzig, A. Lewis, A. Harootunian, M. Isaacson, and E. Krarschmer, Biophys. J. 49, 269 (1986). https://doi.org/10.1016/S0006-3495(86)83640-2

  39. B. Hecht, B. Sick, U.P. Wild, V. Deckert, R. Zenobi, O.J.F. Martin, and D.W. Pohl, J. Chem. Phys. 112, 7761 (2000). https://doi.org/10.1063/1.481382

  40. V.Z. Lozovski, J. Beermann, and S.I. Bozhevolnyi, Phys. Rev. B 75, 045438 (2007). https://doi.org/10.1103/PhysRevB.75.045438

  41. A. Zybin, Y.A. Kuritsyn, E.L. Gurevich, V.V. Temchura, K. Uberla, and K. Niemax, Plasmonics 5, 31 (2010). https://doi.org/10.1007/s11468-009-9111-5

  42. S. Wang, X. Shan, U. Patel, X. Huang, J. Lu, J. Li, and N. Tao, Proc. Nat. Acad. Sci. USA 107, 16028 (2010). https://doi.org/10.1073/pnas.1005264107

  43. V. Lozovski, J Comput. Theor. Nanosci. 9, 859 (2012). https://doi.org/10.1166/jctn.2012.2107

  44. Ch. Girard, Ch. Joachim, and S. Gauthier, Rep. Prog. Phys. 63, 893 (2000). https://doi.org/10.1088/0034-4885/63/6/202

  45. M. Xiao, S. Bozhevolnyi, and O. Keller, Appl. Phys. A 62, 115 (1996).

  46. C.-Z. Wu, X.-B. Mao, Z.-F. Xu, and H.-N. Ye, Optoelectr. Lett. 3, 289 (2007). https://doi.org/10.1007/s11801-007-6091-6

  47. V. Lozovski, J. Comput. Theor. Nanosci. 7, 2077 (2010). https://doi.org/10.1166/jctn.2010.1588

  48. V. Lozovski and V. Piatnytsia, in Proceedings of the International Conference of Young Scientists on Modern Problems of Theoretical Physocs (Bogolubov Inst. Theor. Phys. of the NAS of Ukraine, Kyiv, 2011), p. 30.

  49. O. Keller, Phys. Rep. 268, 85 (1996). https://doi.org/10.1016/0370-1573(95)00059-3

  50. Yu.S. Barash and V.L. Ginzburg, Usp. Fiz. Nauk 143, 345 (1984). https://doi.org/10.3367/UFNr.0143.198407a.0345

  51. Yu.S. Barash, Van der Waals Forces (Nauka, Moscow, 1988) (in Russian).

  52. V. Lozovski, V. Lysenko, V. Pyatnitsia, M. Spivak, Semicond. Phys. Quant. Electr. Optoelectr. 14, 489 (2011). https://doi.org/10.15407/spqeo14.04.489

  53. Preclinical Drug Studies. Methodical Guide, edited by O.V. Stefanov (Ministry of Health of Ukraine, Kyiv, 2001) (in Ukrainian).

  54. A. Bouhelier, Microsc. Res. Techn. 69, 563 (2006). https://doi.org/10.1002/jemt.20328

  55. A.V. Goncharenkoa, H.-Ch. Changa, and J.-K. Wang, Ultramicroscopy 107, 151 (2007). https://doi.org/10.1016/j.ultramic.2006.06.004

  56. B.M. Ross and L.P. Lee, Nanotechnology 19, 2752001 (2008). https://doi.org/10.1088/0957-4484/19/27/275201

  57. S. Lanone, F. Rogerieux, J. Geys, A. Dupont, E. Maillot-Marechal, J. Boczkowski, G. Lacroix, and P. Hoet, Part. Fibre Toxicol. 6, 14 (2009). https://doi.org/10.1186/1743-8977-6-14

  58. V. Lozovski, V. Lysenko, M. Spivak, and V. Sterligov, Semicond. Phys. Quant. Electr. Optoelectr. 15, 80 (2012). https://doi.org/10.15407/spqeo15.01.080

  59. V.A. Sterligov, Y. Men, and P.M. Lytvyn, Opt. Express 18, 43 (2010). https://doi.org/10.1364/OE.18.000043

  60. T.A. Leskova, A.A. Maradudin, and W. Zierau, Opt. Commun. 249, 23 (2005). https://doi.org/10.1016/j.optcom.2005.01.014

  61. V. Lozovski, S. Schrader, and A. Tsykhonya, Opt. Commun. 282, 3257 (2009). https://doi.org/10.1016/j.optcom.2009.05.032

  62. A.A. Maradudin and D.L. Mills, Phys. Rev. B 11, 1392 (1975). https://doi.org/10.1103/PhysRevB.11.1392

  63. J.M. Elson and R.H. Ritchie, Phys. Status Solidi B 62, 461 (1974). https://doi.org/10.1002/pssb.2220620215

  64. A.A. Abrikosov, L.P. Gor'kov, and I.E. Dzyaloshinskij, Methods of Quantum Field Theory in Statistical Physics (Prentice Hall, Englewood Cliffs, N.J., 1963).

  65. S. Bozhevolnyi and A. Evlyukhin, Surf. Sci. 590, 173 (2005). https://doi.org/10.1016/j.susc.2005.06.010

  66. A.D. Jaghjaian, Proc. IEEE 68, 248 (1980). https://doi.org/10.1109/PROC.1980.11620

  67. M.V. Berry and S. Klein, J. Mod. Opt. 43, 2139 (1996). https://doi.org/10.1080/09500349608232876

  68. Human Leukocyte Interferon Manufacture Regulations No. 302-82 (1982).

  69. Russian Federation Patent No. 2080873, date of priority 27.12.1993.

  70. Russian Federation Patent No. 2066188, date of priority 13.04.1993.

  71. Russian Federation Patent No. 2140284, date of priority 06.07.1998.

  72. N.Ya. Spivak, L.N. Lazarenko, and O.N. Mikhailenko, Interferon and the System of Mononuclear Phagocytes (Ukrainian Phytosociological Center, Kyiv, 2002) (in Russian).

  73. B.J. Marquis, Z. Liu, K.L. Braun, and C.L. Haynes, Analyst 136, 3478 (2011). https://doi.org/10.1039/C0AN00785D

  74. B.J. Kirby and E.F. Hasselbrink, in Electorpheresis in Practice, Electrophoresis, Zeta Potential of Microfluidic Substrates: 1. Theory, Experimental Techniques, and Effects on Separations (Wiley, Weinheim, 2004), Vol. 25, p. 187.

  75. Y. Kim, R.C. Jonson, J. Li, J.T. Hupp, and G.C. Schatz, Chem. Phys. Lett. 352, 421 (2002). https://doi.org/10.1016/S0009-2614(01)01506-8

  76. P.K. Jain, K. S.Lee, I.H. EI-Sayed, and M.A. EI-Sayed, J. Phys. Chem. B 110, 7238 (2006). https://doi.org/10.1021/jp057170o

  77. V. Lozovski, V. Lysenko, V. Piatnytsia, O. Scherbakov, N. Zholobak, and M. Spivak, J. Bionanosci. 6, 109 (2012).

Published
2018-10-05
How to Cite
Lysenko, V., Lozovski, V., & Spivak, M. (2018). Nanophysics and Antiviral Therapy. Ukrainian Journal of Physics, 58(1), 77. https://doi.org/10.15407/ujpe58.01.0077
Section
Nanosystems