Energy Spectrum of the Pseudospin-Electron Model in a Dynamical Mean-Field Approach

  • I. V. Stasyuk Institute for Condensed Matter Physics of the Nat. Acad. of Sci. of Ukraine
  • V. O. Krasnov Institute for Condensed Matter Physics of the Nat. Acad. of Sci. of Ukraine
Keywords: pseudospin-electron model, boson-fermion mixtures, dynamical mean field theory

Abstract

The pseudospin-electron model in the case of infinite on-site electron repulsion is investigated. The electron energy spectrum is calculated within the framework of the dynamical mean field theory (DMFT), and the alloy analogy approximation is developed. The effect of the pseudospin-electron interaction, local asymmetry field, and tunneling-like level splitting on the existence and the number of electron subbands is investigated. The relation of the pseudospin-electron model to the problem of energy spectrum of boson-fermion mixtures in optical lattices is discussed.

References


  1. K.A. Muller, Z. Phys. B 80, 193 (1990). https://doi.org/10.1007/BF01357502

  2. I.V. Stasyuk, in Order, Disorder, and Criticality, (World Sci., Singapore, 2007), vol. 2, p. 231. https://doi.org/10.1142/9789812708762_0005

  3. T.S. Mysakovych, V.O. Krasnov, and I.V. Stasyuk, Ukr. J. Phys. 55, 228 (2010).

  4. G.D. Mahan, Phys. Rev. B 14, 780 (1976). https://doi.org/10.1103/PhysRevB.14.780

  5. I.V. Stasyuk and I.R. Dulepa, Cond. Matt. Phys. 10, 259 (2007). https://doi.org/10.5488/CMP.10.2.259

  6. A. Albus, F. Illuminati, and J. Eisert, Phys. Rev. A 68, 023606 (2003). https://doi.org/10.1103/PhysRevA.68.023606

  7. M. Lewenstein, L. Santos, M.A. Baranov, and H. Fehrmann, Phys. Rev. Lett. 92, 050401 (2004). https://doi.org/10.1103/PhysRevLett.92.050401

  8. M. Iskin and J.K. Freericks, Phys. Rev. A 80, 053623 (2009). https://doi.org/10.1103/PhysRevA.80.053623

  9. A. Mering and M. Fleischhauer, Phys. Rev. A 83, 063630 (2011). https://doi.org/10.1103/PhysRevA.83.063630

  10. F. H’ebert, G.G. Batrouni, X. Roy, and V.G. Rousseau, Phys. Rev. B 78, 184505 (2008). https://doi.org/10.1103/PhysRevB.78.184505

  11. T.S. Mysakovych, J. Phys. Stud.: Condens. Matter 22, 355601 (2010).

  12. W. Metzner and D. Vollhardt, Phys. Rev. Lett. 62, 260 (1989). https://doi.org/10.1103/PhysRevLett.62.324

  13. W. Metzner, Phys. Rev. B 43, 8549 (1991). https://doi.org/10.1103/PhysRevB.43.8549

  14. E. M?uller-Hartmann, Z. Phys. B 74, 507 (1989). https://doi.org/10.1007/BF01311397

  15. I.V. Stasyuk and A.M. Shvaika, J. of Phys. Studies 2, 177 (1999).

  16. I.V Stasyuk, Cond. Matt. Phys. 3, 437 (2000). https://doi.org/10.5488/CMP.3.2.437

  17. M. Potthoff, T. Herrmann, T. Wegner, and W. Nolting, Phys. Stat. Sol. (b) 210, 199 (1998). https://doi.org/10.1002/(SICI)1521-3951(199811)210:1<199::AID-PSSB199>3.0.CO;2-3

  18. I.V. Stasyuk and A.M. Shvaika, Acta Phys. Polon. A 84, 293 (1993). https://doi.org/10.12693/APhysPolA.84.293

  19. I.V. Stasyuk and V.O. Krasnov, Cond. Matt. Phys. 9, 725 (2006). https://doi.org/10.5488/CMP.9.4.725

  20. P.M. Slobodyan and I.V. Stasyuk, Theor. Math. Phys. USSR, 19, 616 (1974). https://doi.org/10.1007/BF01035575

  21. E. Altman, E. Demler, and A. Rosch, Preprint arXiv:1205.4026v1, (2012).
Published
2018-10-05
How to Cite
Stasyuk, I., & Krasnov, V. (2018). Energy Spectrum of the Pseudospin-Electron Model in a Dynamical Mean-Field Approach. Ukrainian Journal of Physics, 58(1), 68. https://doi.org/10.15407/ujpe58.01.0068
Section
Solid matter