Energy Spectrum of the Pseudospin-Electron Model in a Dynamical Mean-Field Approach

Authors

  • I. V. Stasyuk Institute for Condensed Matter Physics of the Nat. Acad. of Sci. of Ukraine
  • V. O. Krasnov Institute for Condensed Matter Physics of the Nat. Acad. of Sci. of Ukraine

DOI:

https://doi.org/10.15407/ujpe58.01.0068

Keywords:

pseudospin-electron model, boson-fermion mixtures, dynamical mean field theory

Abstract

The pseudospin-electron model in the case of infinite on-site electron repulsion is investigated. The electron energy spectrum is calculated within the framework of the dynamical mean field theory (DMFT), and the alloy analogy approximation is developed. The effect of the pseudospin-electron interaction, local asymmetry field, and tunneling-like level splitting on the existence and the number of electron subbands is investigated. The relation of the pseudospin-electron model to the problem of energy spectrum of boson-fermion mixtures in optical lattices is discussed.

References

<ol>
<li> K.A. Muller, Z. Phys. B 80, 193 (1990).&nbsp;<a href="https://doi.org/10.1007/BF01357502">https://doi.org/10.1007/BF01357502</a></li>
<li> I.V. Stasyuk, in Order, Disorder, and Criticality, (World Sci., Singapore, 2007), vol. 2, p. 231.&nbsp;<a href="https://doi.org/10.1142/9789812708762_0005">https://doi.org/10.1142/9789812708762_0005</a></li>
<li> T.S. Mysakovych, V.O. Krasnov, and I.V. Stasyuk, Ukr. J. Phys. 55, 228 (2010).</li>
<li> G.D. Mahan, Phys. Rev. B 14, 780 (1976).&nbsp;<a href="https://doi.org/10.1103/PhysRevB.14.780">https://doi.org/10.1103/PhysRevB.14.780</a></li>
<li> I.V. Stasyuk and I.R. Dulepa, Cond. Matt. Phys. 10, 259 (2007).&nbsp;<a href="https://doi.org/10.5488/CMP.10.2.259">https://doi.org/10.5488/CMP.10.2.259</a></li>
<li> A. Albus, F. Illuminati, and J. Eisert, Phys. Rev. A 68, 023606 (2003).&nbsp;<a href="https://doi.org/10.1103/PhysRevA.68.023606">https://doi.org/10.1103/PhysRevA.68.023606</a></li>
<li> M. Lewenstein, L. Santos, M.A. Baranov, and H. Fehrmann, Phys. Rev. Lett. 92, 050401 (2004).&nbsp;<a href="https://doi.org/10.1103/PhysRevLett.92.050401">https://doi.org/10.1103/PhysRevLett.92.050401</a></li>
<li> M. Iskin and J.K. Freericks, Phys. Rev. A 80, 053623 (2009).&nbsp;<a href="https://doi.org/10.1103/PhysRevA.80.053623">https://doi.org/10.1103/PhysRevA.80.053623</a></li>
<li> A. Mering and M. Fleischhauer, Phys. Rev. A 83, 063630 (2011).&nbsp;<a href="https://doi.org/10.1103/PhysRevA.83.063630">https://doi.org/10.1103/PhysRevA.83.063630</a></li>
<li> F. H’ebert, G.G. Batrouni, X. Roy, and V.G. Rousseau, Phys. Rev. B 78, 184505 (2008).&nbsp;<a href="https://doi.org/10.1103/PhysRevB.78.184505">https://doi.org/10.1103/PhysRevB.78.184505</a></li>
<li> T.S. Mysakovych, J. Phys. Stud.: Condens. Matter 22, 355601 (2010).</li>
<li> W. Metzner and D. Vollhardt, Phys. Rev. Lett. 62, 260 (1989).&nbsp;<a href="https://doi.org/10.1103/PhysRevLett.62.324">https://doi.org/10.1103/PhysRevLett.62.324</a></li>
<li> W. Metzner, Phys. Rev. B 43, 8549 (1991).&nbsp;<a href="https://doi.org/10.1103/PhysRevB.43.8549">https://doi.org/10.1103/PhysRevB.43.8549</a></li>
<li> E. M?uller-Hartmann, Z. Phys. B 74, 507 (1989).&nbsp;<a href="https://doi.org/10.1007/BF01311397">https://doi.org/10.1007/BF01311397</a></li>
<li> I.V. Stasyuk and A.M. Shvaika, J. of Phys. Studies 2, 177 (1999).</li>
<li> I.V Stasyuk, Cond. Matt. Phys. 3, 437 (2000).&nbsp;<a href="https://doi.org/10.5488/CMP.3.2.437">https://doi.org/10.5488/CMP.3.2.437</a></li>
<li> M. Potthoff, T. Herrmann, T. Wegner, and W. Nolting, Phys. Stat. Sol. (b) 210, 199 (1998).&nbsp;<a href="https://doi.org/10.1002/(SICI)1521-3951(199811)210:1<199::AID-PSSB199>3.0.CO;2-3">https://doi.org/10.1002/(SICI)1521-3951(199811)210:1<199::AID-PSSB199>3.0.CO;2-3</a></li>
<li> I.V. Stasyuk and A.M. Shvaika, Acta Phys. Polon. A 84, 293 (1993).&nbsp;<a href="https://doi.org/10.12693/APhysPolA.84.293">https://doi.org/10.12693/APhysPolA.84.293</a></li>
<li> I.V. Stasyuk and V.O. Krasnov, Cond. Matt. Phys. 9, 725 (2006).&nbsp;<a href="https://doi.org/10.5488/CMP.9.4.725">https://doi.org/10.5488/CMP.9.4.725</a></li>
<li> P.M. Slobodyan and I.V. Stasyuk, Theor. Math. Phys. USSR, 19, 616 (1974).&nbsp;<a href="https://doi.org/10.1007/BF01035575">https://doi.org/10.1007/BF01035575</a></li>
<li> E. Altman, E. Demler, and A. Rosch, Preprint arXiv:1205.4026v1, (2012).
</ol>

Downloads

Published

2018-10-05

How to Cite

Stasyuk, I. V., & Krasnov, V. O. (2018). Energy Spectrum of the Pseudospin-Electron Model in a Dynamical Mean-Field Approach. Ukrainian Journal of Physics, 58(1), 68. https://doi.org/10.15407/ujpe58.01.0068

Issue

Section

Solid matter