Electrical and High-frequency Properties of Compensated Gan Under Electron Streaming Conditions

  • G. I. Syngayivska V.E. Lashkarev Institute of Semiconductor Physics, Department of Theoretical Physics, Nat. Acad. of Sci. of Ukraine
  • V. V. Korotyeyev V.E. Lashkarev Institute of Semiconductor Physics, Department of Theoretical Physics, Nat. Acad. of Sci. of Ukraine
Keywords: streaming, dynamic differential mobility, diffusion coefficient, Fr¨ohlich constant, distribution function, transit-time frequency

Abstract

Conditions required for the streaming effect and the optical-phonon transit-time resonance to take place in a compensated bulk GaN are analyzed in detail. Monte Carlo calculations of the high-frequency differential electron mobility are carried out. It is shown that the negative dynamic differential mobility can be realized in the terahertz frequency range, at low lattice temperatures of 30–77 K, and applied electric fields of 3–10 kV/cm. New manifestations of the streaming effect are revealed, namely, the anisotropy of the dynamic differential mobility and a specific behavior of the diffusion coefficient in the direction perpendicular to the applied electric field. The theory of terahertz radiation transmission through the structure with an epitaxial GaN layer is developed. Conditions for the amplification of electromagnetic waves in the frequency range of 0.5–2 THz are obtained. The polarization dependence of the radiation transmission coefficient through the structure in electric fields above 1 kV/cm is found.

References


  1. W. Shockley, Bell Syst. Tech. J. 30, 990 (1951). https://doi.org/10.1002/j.1538-7305.1951.tb03692.x

  2. I.M. Dykman and P.M. Tomchuk, Transport Phenomena and Fluctuations in Semiconductors (Naukova Dumka, Kyiv, 1981) (in Russian).

  3. D.K. Ferry, Semiconductors (Macmillan, New York, 1991), Ch. 10.

  4. V.E. Gantmakher and Y.B. Levinson, Carrier Scattering in Metals and Semiconductors (North-Holland, Amsterdam, 1987).

  5. G.A. Baraff, Phys. Rev. 128, 2507 (1962); https://doi.org/10.1103/PhysRev.128.2507Phys. Rev. A 133, 26 (1964). https://doi.org/10.1103/PhysRev.133.A26

  6. E. Vasilyus and E. Levinson, Zh. Eksp. Teor. Fiz. 50, 1660 (1966); 52, 1013 (1967).

  7. Z.S. Gribnikov and V.A. Kochelap, Zh. Eksp. Teor. Fiz. 58, 1046 (1970).

  8. W. Cox, J. Phys. Condens.Matter 2, 4849 (1990). https://doi.org/10.1088/0953-8984/2/22/006

  9. W. Fawcett, A.D. Boardman, and S. Swain, J. Chem. Solids 31, 1963 (1970). https://doi.org/10.1016/0022-3697(70)90001-6

  10. C. Jacoboni and L. Reggiani, Rev. Mod. Phys. 55, 645 (1983). https://doi.org/10.1103/RevModPhys.55.645

  11. A. Matulionis, J. Pozela, and A. Reklaitis, Phys. Status Solidi A 31, 83 (1975). https://doi.org/10.1002/pssa.2210310109

  12. R.C. Curby and D.K. Ferry, Phys. Status Solidi A 20, 569 (1973). https://doi.org/10.1002/pssa.2210200218

  13. F.M. Peeters, W. Van Puymbroeck, and J.T. Devreese, Phys. Rev. B 31, 5322 (1985). https://doi.org/10.1103/PhysRevB.31.5322

  14. T.W. Hickmott, P.M. Solomon, F.F. Fang, F. Stern, R. Fischer, and H. Morkos, Phys. Rev. Lett. 52, 2053 (1984). https://doi.org/10.1103/PhysRevLett.52.2053

  15. P-F Lu, D.C. Tsui, and H.M. Cox, Phys. Rev. B 35, 9659 (1987). https://doi.org/10.1103/PhysRevB.35.9659

  16. C.B. Hanna, E.S. Hellman, and R.B. Laughlin, Phys. Rev B 34, 5475 (1986). https://doi.org/10.1103/PhysRevB.34.5475

  17. M. Levinstein, S. Rumyantsev, and M. Shur, Properties of Advanced Semiconductor Materials: GaN, AlN, InN, BN, SiC, SiGe (Wiley, New York, 2001).

  18. A.A. Andronov and V.A. Kozlov, Pis'ma Zh. Eksp. Teor. Fiz. 17, 124 (1973).

  19. Ya.I. Alber, A.A. Andronov, V.A. Valov, V.A. Kozlov, A.M. Lerner, and I.P. Ryazantseva, Zh. ` Eksp. Teor. Fiz. 72, 1031 (1977).

  20. L.E. Vorob'ev, S.N. Danilov, V.N. Tulupenko, and D.A. Firsov, JETP Lett. 73, 219 (2001). https://doi.org/10.1134/1.1371057

  21. N. Ishida and T. Kurosawa, Jpn. J. Appl. Phys. 64, 2994 (1995). https://doi.org/10.1143/JPSJ.64.2994

  22. P.N. Shiktorov, Sov. Phys. – Collect. 25, 59 (1985).

  23. V.A. Kozlov, A.V. Nikolaev, and A.V. Samokhvalov, Semicond. Sci. Technol. 19, s99 (2004); https://doi.org/10.1088/0268-1242/19/4/036E. Starikov, P. Shiktorov, V. Gruzinskis, L. Varani, C. Palermo, J.-F. Millithaler, and L. Reggiani, J. Phys. Condens. Matter 20, 1 (2008). https://doi.org/10.1088/0953-8984/20/38/384209

  24. E.A. Barry, K.W. Kim, and V.A. Kochelap, Phys. Status Solidi B 228, 571 (2001); https://doi.org/10.1002/1521-3951(200111)228:2<571::AID-PSSB571>3.0.CO;2-IAppl. Phys. Lett. 80, 2317 (2002). https://doi.org/10.1063/1.1464666

  25. V.M. Polyakov and F. Schwierz, J. Appl. Phys. 100, 103704 (2006). https://doi.org/10.1063/1.2365381

  26. V.V. Korotyeyev, G.I. Syngayivska, V.A. Kochelap, and A.A. Klimov, Semicond. Phys. Quant. Electr. Optoelectr. 12, 328 (2009).

  27. E. Starikov, P. Shiktorov, V. Gruzinskis, L. Reggiani, L. Varani, J.C. Vaissiere, and J.H. Zhao, J. Appl. Phys. 89, 1161 (2001). https://doi.org/10.1063/1.1334924

  28. E. Starikov, P. Shiktorov, V. Gruzinskis, L. Regiani, L. Varani, J.C. Vaissiere, and J.H. Zhao, IEEE Trans. Electron Devices 48, 438 (2001); https://doi.org/10.1109/16.906433Phys. Status Solidi A 198, 247 (2002).

  29. E. Starikov, P. Shiktorov, V. Gruzinskis, L. Varani, C. Palermo, J-F. Millithaler, and L. Regiani, J. Phys. Condens. Matter 20, 384209 (2008);
     https://doi.org/10.1088/0953-8984/20/38/384209Phys. Rev. B 76, 045333 (2007). https://doi.org/10.1103/PhysRevB.76.045333

  30. J.T. Lu and J.C. Cao, Semicond. Sci. Technol. 20, 829 (2005). https://doi.org/10.1088/0268-1242/20/8/034

  31. V.V. Korotyeyev, V.A. Kochelap, K.W. Kim, and D.L. Woolard, Appl. Phys. Lett. 82, 2643 (2003).
     https://doi.org/10.1063/1.1569039

  32. K.W. Kim, V.V. Korotyeyev, V.A. Kochelap, A.A. Klimov, and D.L. Woolard, J. Appl. Phys. 96, 6488 (2004). https://doi.org/10.1063/1.1811388

  33. J.T. Lu, J.C. Cao, and S.L. Feng, Phys. Rev. B 73, 195326 (2006). https://doi.org/10.1103/PhysRevB.73.195326

  34. V.N. Sokolov, K.W. Kim, V.A. Kochelap, and D.L. Woolard, Appl. Phys. Lett. 84, 3630 (2002). https://doi.org/10.1063/1.1738518

  35. V.V. Mitin, V.A. Kochelap, and M. Stroscio, Quantum Heterostructures for Microelectronics and Optoelectronics (Cambridge Univ. Press, New York, 1999).

  36. V.L. Bonch-Bruevich and S.G. Kalashnikov, Semiconductor Physics (Nauka, Moscow, 1977) (in Russian).

  37. M.S. Gupta, J. Appl. Phys. 49, 2837 (1978); https://doi.org/10.1063/1.325164R. Fauquembergue, J. Zimmermann, A. Kaszynski, and E. Constant, J. Appl. Phys. 51, 1065 (1980). https://doi.org/10.1063/1.327713

  38. M.A. Littlejohn, J.R. Hauser, and T.H. Glisson, Appl. Phys. Lett. 26, 625 (1975). https://doi.org/10.1063/1.88002

  39. D.C. Look and J.R. Sizelove, Appl. Phys. Lett. 79, 1133 (2001). https://doi.org/10.1063/1.1394954

  40. L. Bouguen, S. Contreras, B. Jouault, L. Konczewicz, J. Camassel, Y. Cordier, M. Azize, S. Chenot, and N. Baron, Appl. Phys. Lett 92, 043504 (2008). https://doi.org/10.1063/1.2838301

  41. V. Bareikis, A. Matulionis, J. Pozela, S. Asmontas, A. Reklaitis, A. Galdikas, R. Miliusyte, and E. Starikovas, Hot Electron Diffusion (Mokslas, Vilnius, 1981) (in Russian).

  42. E. Starikov, P. Shiktorov, V. Gruzinskis, L. Reggiani, L. Varani, J.C. Vaissiere. and C. Palermo, Semicond. Sci. Technol. 20, 279 (2005). https://doi.org/10.1088/0268-1242/20/3/004

  43. D.J. Bartelink and G.Perski, Appl. Phys. Lett. 16, 191 (1970). https://doi.org/10.1063/1.1653157

  44. J. Zimmermann, Y. Leroy, and E. Constant, J. Appl. Phys. 49, 3378 (1978). https://doi.org/10.1063/1.325293

  45. P.A. Lebwohl, J. Appl. Phys. 44, 1744 (1973). https://doi.org/10.1063/1.1662441

  46. T. Laurent, R. Sharma, J. Torres, P. Nouvel, S. Blin, L. Varani, Y. Cordier, M. Chmielowska, S. Chenot, J.-P. Faurie, B. Beaumont, P. Shiktorov, E. Starikov, V. Gruzinskis, V.V. Korotyeyev, and V.A. Kochelap, Appl. Phys. Lett. 99, 082101 (2011). https://doi.org/10.1063/1.3627183
Published
2018-10-05
How to Cite
Syngayivska, G., & Korotyeyev, V. (2018). Electrical and High-frequency Properties of Compensated Gan Under Electron Streaming Conditions. Ukrainian Journal of Physics, 58(1), 40. https://doi.org/10.15407/ujpe58.01.0040
Section
Solid matter