Electrical and High-frequency Properties of Compensated Gan Under Electron Streaming Conditions

Authors

  • G. I. Syngayivska V.E. Lashkarev Institute of Semiconductor Physics, Department of Theoretical Physics, Nat. Acad. of Sci. of Ukraine
  • V. V. Korotyeyev V.E. Lashkarev Institute of Semiconductor Physics, Department of Theoretical Physics, Nat. Acad. of Sci. of Ukraine

DOI:

https://doi.org/10.15407/ujpe58.01.0040

Keywords:

streaming, dynamic differential mobility, diffusion coefficient, Fr¨ohlich constant, distribution function, transit-time frequency

Abstract

Conditions required for the streaming effect and the optical-phonon transit-time resonance to take place in a compensated bulk GaN are analyzed in detail. Monte Carlo calculations of the high-frequency differential electron mobility are carried out. It is shown that the negative dynamic differential mobility can be realized in the terahertz frequency range, at low lattice temperatures of 30–77 K, and applied electric fields of 3–10 kV/cm. New manifestations of the streaming effect are revealed, namely, the anisotropy of the dynamic differential mobility and a specific behavior of the diffusion coefficient in the direction perpendicular to the applied electric field. The theory of terahertz radiation transmission through the structure with an epitaxial GaN layer is developed. Conditions for the amplification of electromagnetic waves in the frequency range of 0.5–2 THz are obtained. The polarization dependence of the radiation transmission coefficient through the structure in electric fields above 1 kV/cm is found.

References

<ol>
<li> W. Shockley, Bell Syst. Tech. J. 30, 990 (1951).&nbsp;<a href="https://doi.org/10.1002/j.1538-7305.1951.tb03692.x">https://doi.org/10.1002/j.1538-7305.1951.tb03692.x</a></li>
<li> I.M. Dykman and P.M. Tomchuk, Transport Phenomena and Fluctuations in Semiconductors (Naukova Dumka, Kyiv, 1981) (in Russian).</li>
<li> D.K. Ferry, Semiconductors (Macmillan, New York, 1991), Ch. 10.</li>
<li> V.E. Gantmakher and Y.B. Levinson, Carrier Scattering in Metals and Semiconductors (North-Holland, Amsterdam, 1987).</li>
<li> G.A. Baraff, Phys. Rev. 128, 2507 (1962);&nbsp;<a href="https://doi.org/10.1103/PhysRev.128.2507">https://doi.org/10.1103/PhysRev.128.2507</a>Phys. Rev. A 133, 26 (1964).&nbsp;<a href="https://doi.org/10.1103/PhysRev.133.A26">https://doi.org/10.1103/PhysRev.133.A26</a></li>
<li> E. Vasilyus and E. Levinson, Zh. Eksp. Teor. Fiz. 50, 1660 (1966); 52, 1013 (1967).</li>
<li> Z.S. Gribnikov and V.A. Kochelap, Zh. Eksp. Teor. Fiz. 58, 1046 (1970).</li>
<li> W. Cox, J. Phys. Condens.Matter 2, 4849 (1990).&nbsp;<a href="https://doi.org/10.1088/0953-8984/2/22/006">https://doi.org/10.1088/0953-8984/2/22/006</a></li>
<li> W. Fawcett, A.D. Boardman, and S. Swain, J. Chem. Solids 31, 1963 (1970).&nbsp;<a href="https://doi.org/10.1016/0022-3697(70)90001-6">https://doi.org/10.1016/0022-3697(70)90001-6</a></li>
<li> C. Jacoboni and L. Reggiani, Rev. Mod. Phys. 55, 645 (1983).&nbsp;<a href="https://doi.org/10.1103/RevModPhys.55.645">https://doi.org/10.1103/RevModPhys.55.645</a></li>
<li> A. Matulionis, J. Pozela, and A. Reklaitis, Phys. Status Solidi A 31, 83 (1975).&nbsp;<a href="https://doi.org/10.1002/pssa.2210310109">https://doi.org/10.1002/pssa.2210310109</a></li>
<li> R.C. Curby and D.K. Ferry, Phys. Status Solidi A 20, 569 (1973).&nbsp;<a href="https://doi.org/10.1002/pssa.2210200218">https://doi.org/10.1002/pssa.2210200218</a></li>
<li> F.M. Peeters, W. Van Puymbroeck, and J.T. Devreese, Phys. Rev. B 31, 5322 (1985).&nbsp;<a href="https://doi.org/10.1103/PhysRevB.31.5322">https://doi.org/10.1103/PhysRevB.31.5322</a></li>
<li> T.W. Hickmott, P.M. Solomon, F.F. Fang, F. Stern, R. Fischer, and H. Morkos, Phys. Rev. Lett. 52, 2053 (1984).&nbsp;<a href="https://doi.org/10.1103/PhysRevLett.52.2053">https://doi.org/10.1103/PhysRevLett.52.2053</a></li>
<li> P-F Lu, D.C. Tsui, and H.M. Cox, Phys. Rev. B 35, 9659 (1987).&nbsp;<a href="https://doi.org/10.1103/PhysRevB.35.9659">https://doi.org/10.1103/PhysRevB.35.9659</a></li>
<li> C.B. Hanna, E.S. Hellman, and R.B. Laughlin, Phys. Rev B 34, 5475 (1986).&nbsp;<a href="https://doi.org/10.1103/PhysRevB.34.5475">https://doi.org/10.1103/PhysRevB.34.5475</a></li>
<li> M. Levinstein, S. Rumyantsev, and M. Shur, Properties of Advanced Semiconductor Materials: GaN, AlN, InN, BN, SiC, SiGe (Wiley, New York, 2001).</li>
<li> A.A. Andronov and V.A. Kozlov, Pis'ma Zh. Eksp. Teor. Fiz. 17, 124 (1973).</li>
<li> Ya.I. Alber, A.A. Andronov, V.A. Valov, V.A. Kozlov, A.M. Lerner, and I.P. Ryazantseva, Zh. ` Eksp. Teor. Fiz. 72, 1031 (1977).</li>
<li> L.E. Vorob'ev, S.N. Danilov, V.N. Tulupenko, and D.A. Firsov, JETP Lett. 73, 219 (2001).&nbsp;<a href="https://doi.org/10.1134/1.1371057">https://doi.org/10.1134/1.1371057</a></li>
<li> N. Ishida and T. Kurosawa, Jpn. J. Appl. Phys. 64, 2994 (1995).&nbsp;<a href="https://doi.org/10.1143/JPSJ.64.2994">https://doi.org/10.1143/JPSJ.64.2994</a></li>
<li> P.N. Shiktorov, Sov. Phys. – Collect. 25, 59 (1985).</li>
<li> V.A. Kozlov, A.V. Nikolaev, and A.V. Samokhvalov, Semicond. Sci. Technol. 19, s99 (2004);&nbsp;<a href="https://doi.org/10.1088/0268-1242/19/4/036">https://doi.org/10.1088/0268-1242/19/4/036</a>E. Starikov, P. Shiktorov, V. Gruzinskis, L. Varani, C. Palermo, J.-F. Millithaler, and L. Reggiani, J. Phys. Condens. Matter 20, 1 (2008).&nbsp;<a href="https://doi.org/10.1088/0953-8984/20/38/384209">https://doi.org/10.1088/0953-8984/20/38/384209</a></li>
<li> E.A. Barry, K.W. Kim, and V.A. Kochelap, Phys. Status Solidi B 228, 571 (2001);&nbsp;<a href="https://doi.org/10.1002/1521-3951(200111)228:2<571::AID-PSSB571>3.0.CO;2-I">https://doi.org/10.1002/1521-3951(200111)228:2<571::AID-PSSB571>3.0.CO;2-I</a>Appl. Phys. Lett. 80, 2317 (2002).&nbsp;<a href="https://doi.org/10.1063/1.1464666">https://doi.org/10.1063/1.1464666</a></li>
<li> V.M. Polyakov and F. Schwierz, J. Appl. Phys. 100, 103704 (2006).&nbsp;<a href="https://doi.org/10.1063/1.2365381">https://doi.org/10.1063/1.2365381</a></li>
<li> V.V. Korotyeyev, G.I. Syngayivska, V.A. Kochelap, and A.A. Klimov, Semicond. Phys. Quant. Electr. Optoelectr. 12, 328 (2009).</li>
<li> E. Starikov, P. Shiktorov, V. Gruzinskis, L. Reggiani, L. Varani, J.C. Vaissiere, and J.H. Zhao, J. Appl. Phys. 89, 1161 (2001).&nbsp;<a href="https://doi.org/10.1063/1.1334924">https://doi.org/10.1063/1.1334924</a></li>
<li> E. Starikov, P. Shiktorov, V. Gruzinskis, L. Regiani, L. Varani, J.C. Vaissiere, and J.H. Zhao, IEEE Trans. Electron Devices 48, 438 (2001);&nbsp;<a href="https://doi.org/10.1109/16.906433">https://doi.org/10.1109/16.906433</a>Phys. Status Solidi A 198, 247 (2002).</li>
<li> E. Starikov, P. Shiktorov, V. Gruzinskis, L. Varani, C. Palermo, J-F. Millithaler, and L. Regiani, J. Phys. Condens. Matter 20, 384209 (2008);
&nbsp;<a href="https://doi.org/10.1088/0953-8984/20/38/384209">https://doi.org/10.1088/0953-8984/20/38/384209</a>Phys. Rev. B 76, 045333 (2007).&nbsp;<a href="https://doi.org/10.1103/PhysRevB.76.045333">https://doi.org/10.1103/PhysRevB.76.045333</a></li>
<li> J.T. Lu and J.C. Cao, Semicond. Sci. Technol. 20, 829 (2005).&nbsp;<a href="https://doi.org/10.1088/0268-1242/20/8/034">https://doi.org/10.1088/0268-1242/20/8/034</a></li>
<li> V.V. Korotyeyev, V.A. Kochelap, K.W. Kim, and D.L. Woolard, Appl. Phys. Lett. 82, 2643 (2003).
&nbsp;<a href="https://doi.org/10.1063/1.1569039">https://doi.org/10.1063/1.1569039</a>
</li>
<li> K.W. Kim, V.V. Korotyeyev, V.A. Kochelap, A.A. Klimov, and D.L. Woolard, J. Appl. Phys. 96, 6488 (2004).&nbsp;<a href="https://doi.org/10.1063/1.1811388">https://doi.org/10.1063/1.1811388</a></li>
<li> J.T. Lu, J.C. Cao, and S.L. Feng, Phys. Rev. B 73, 195326 (2006).&nbsp;<a href="https://doi.org/10.1103/PhysRevB.73.195326">https://doi.org/10.1103/PhysRevB.73.195326</a></li>
<li> V.N. Sokolov, K.W. Kim, V.A. Kochelap, and D.L. Woolard, Appl. Phys. Lett. 84, 3630 (2002).&nbsp;<a href="https://doi.org/10.1063/1.1738518">https://doi.org/10.1063/1.1738518</a></li>
<li> V.V. Mitin, V.A. Kochelap, and M. Stroscio, Quantum Heterostructures for Microelectronics and Optoelectronics (Cambridge Univ. Press, New York, 1999).</li>
<li> V.L. Bonch-Bruevich and S.G. Kalashnikov, Semiconductor Physics (Nauka, Moscow, 1977) (in Russian).</li>
<li> M.S. Gupta, J. Appl. Phys. 49, 2837 (1978);&nbsp;<a href="https://doi.org/10.1063/1.325164">https://doi.org/10.1063/1.325164</a>R. Fauquembergue, J. Zimmermann, A. Kaszynski, and E. Constant, J. Appl. Phys. 51, 1065 (1980).&nbsp;<a href="https://doi.org/10.1063/1.327713">https://doi.org/10.1063/1.327713</a></li>
<li> M.A. Littlejohn, J.R. Hauser, and T.H. Glisson, Appl. Phys. Lett. 26, 625 (1975).&nbsp;<a href="https://doi.org/10.1063/1.88002">https://doi.org/10.1063/1.88002</a></li>
<li> D.C. Look and J.R. Sizelove, Appl. Phys. Lett. 79, 1133 (2001).&nbsp;<a href="https://doi.org/10.1063/1.1394954">https://doi.org/10.1063/1.1394954</a></li>
<li> L. Bouguen, S. Contreras, B. Jouault, L. Konczewicz, J. Camassel, Y. Cordier, M. Azize, S. Chenot, and N. Baron, Appl. Phys. Lett 92, 043504 (2008).&nbsp;<a href="https://doi.org/10.1063/1.2838301">https://doi.org/10.1063/1.2838301</a></li>
<li> V. Bareikis, A. Matulionis, J. Pozela, S. Asmontas, A. Reklaitis, A. Galdikas, R. Miliusyte, and E. Starikovas, Hot Electron Diffusion (Mokslas, Vilnius, 1981) (in Russian).</li>
<li> E. Starikov, P. Shiktorov, V. Gruzinskis, L. Reggiani, L. Varani, J.C. Vaissiere. and C. Palermo, Semicond. Sci. Technol. 20, 279 (2005).&nbsp;<a href="https://doi.org/10.1088/0268-1242/20/3/004">https://doi.org/10.1088/0268-1242/20/3/004</a></li>
<li> D.J. Bartelink and G.Perski, Appl. Phys. Lett. 16, 191 (1970).&nbsp;<a href="https://doi.org/10.1063/1.1653157">https://doi.org/10.1063/1.1653157</a></li>
<li> J. Zimmermann, Y. Leroy, and E. Constant, J. Appl. Phys. 49, 3378 (1978).&nbsp;<a href="https://doi.org/10.1063/1.325293">https://doi.org/10.1063/1.325293</a></li>
<li> P.A. Lebwohl, J. Appl. Phys. 44, 1744 (1973).&nbsp;<a href="https://doi.org/10.1063/1.1662441">https://doi.org/10.1063/1.1662441</a></li>
<li> T. Laurent, R. Sharma, J. Torres, P. Nouvel, S. Blin, L. Varani, Y. Cordier, M. Chmielowska, S. Chenot, J.-P. Faurie, B. Beaumont, P. Shiktorov, E. Starikov, V. Gruzinskis, V.V. Korotyeyev, and V.A. Kochelap, Appl. Phys. Lett. 99, 082101 (2011).&nbsp;<a href="https://doi.org/10.1063/1.3627183">https://doi.org/10.1063/1.3627183</a>
</ol>

Published

2018-10-05

How to Cite

Syngayivska, G. I., & Korotyeyev, V. V. (2018). Electrical and High-frequency Properties of Compensated Gan Under Electron Streaming Conditions. Ukrainian Journal of Physics, 58(1), 40. https://doi.org/10.15407/ujpe58.01.0040

Issue

Section

Solid matter